Ubiquitin Cytochemical Changes During Azaserine-Initiated Pancreatic Carcinogenesis

Abstract

The ubiquitin (Ub)- proteasome proteolytic system is highly selective, and the specific proteins involved in cell division, growth, activation, signaling and transcription are degraded at different rate depending on the physio-pathological state of the cell. Ubiquitination serves first of all as a signal for protein degradation of short-lived and abnormal proteins under several stressful conditions. The immunocytochemical localization of Ub in some malignant tumours has recently been presented and differences in Ub expression has been observed during malignant transformation. Change in the level of Ub and Ub-conjugated proteins might reflect a higher metabolic-catabolic ratio in neoplastic cells. Most studies have been focused on the malignant stage of tumour progression, and only a few papers have dealt with the change in Ub and Ub-protein conjugates level during the whole progression. To address this problem, we applied an azaserine-induced pancreatic carcinogenesis model, in which premalignant and malignant stages were investigated throughout the progression. The level of Ub immunoreactivity was measured in nucleus and cytoplasm by electron microscopic immunocytochemical and morphometrical methods. We found a significant increase of Ub level in the nucleus and the cytoplasmic area in premalignant atypical acinar cell nodule (AACN) cells and in malignant adenocarcinoma in situ (CIS) cells at month 20 after initiation.

References

  1. 1.

    Adams, J., Palombella, V. J., Sausville, E. A., Johnson, J., Destree, A., Lazarus, D. D., Maas, J., Prakash, S., Elliott, P. J. (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 59(11), 2615–2622.

    CAS  PubMed  Google Scholar 

  2. 2.

    Alves-Rodrigues, A., Gregori, L., Figueiredo-Pereira, M. E. (1998) Ubiquitin, cellular inclusions and their role in neurodegeneration. Trends Neurosci. 21(12), 516–520.

    CAS  Article  Google Scholar 

  3. 3.

    Arnold, J., Dawson, S., Fergusson, J., Lowe, J., Landor, M., Mayer, R. J. (1998) Ubiquitin and its role in neurodegeneration. Prog. Brain Res. 117, 23–34.

    CAS  Article  Google Scholar 

  4. 4.

    Chau, V., Tobias, J. W., Bachmair, A., Marroiott, D., Ecker, D. J., Gonda, D. K., Varshavsky, A. (1989) A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243, 1576–1583.

    CAS  Article  Google Scholar 

  5. 5.

    Ciechanover, A., DiGiuseppe, J. A., Bercovich, B., Orian, A., Richter, J. D., Schwartz, A. L., Brodeur, G. M. (1991) Degradation of nuclear oncoproteins by the ubiquitin system in vitro. Proc. Natl. Acad. Sci. USA 88, 139–143.

    CAS  Article  Google Scholar 

  6. 6.

    Ciechanover, A. (1994) The ubiquitin-proteasome proteolytic pathway. Cell 79, 13–21.

    CAS  Article  Google Scholar 

  7. 7.

    Ciechanover, A., Orian, A., Schwartz, A. L. (2000) The ubiquitin-mediated proteolytic pathway: mode of action and clinical implications. J. Cell Biochem. Suppl. 34, 40–51.

    CAS  Article  Google Scholar 

  8. 8.

    Finch, J. S., John, T. S., Krieg, P., Bonham, K., Smith, H. T., Fried, V. A., Bowden, G. T. (1992) Overexpression of three ubiquitin genes in mouse epidermal tumors is associated with enhanced cellular proliferation and stress. Cell Growth Differ. 3, 269–278.

    CAS  PubMed  Google Scholar 

  9. 9.

    Finley, D., Ozhaynak, E., Varshavsky, A. (1987) The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48, 1035–1046.

    CAS  Article  Google Scholar 

  10. 10.

    Galloway, P. G., Likavec, M. J. (1989) Ubiquitin in normal, reactive and neoplastic human astrocytes. Brain Res. 500, 343–351.

    CAS  Article  Google Scholar 

  11. 11.

    Golab, J., Stoklosa, T., Czajka, A., Dabrowska, A., Jakobisiak, M., Zagozdon, R., Wojcik, C., Marczak, M., Wilk, S. (2000) Synergistic antitumor effects of a selective proteasome inhibitor and TNF in mice. Anticancer Res. 20(3A), 1717–1721.

    CAS  PubMed  Google Scholar 

  12. 12.

    Haas, A. L., Bright, P. M. (1985) The immunochemical detection and quantitation of intracellular ubiquitin-protein conjugates. J. Biol. Chem. 260, 12464–12473.

    CAS  PubMed  Google Scholar 

  13. 13.

    Hershko, A., Ciechanover, A. (1986) The ubiquitin pathway for the degradation of intracellular proteins. Prog. Nucleic Acid Res. Mol. Biol. 33, 19–56.

    CAS  Article  Google Scholar 

  14. 14.

    Ishibashi, Y., Takada, K., Joh, K., Ohkawa, K., Aoki, T, Matsuda, M. (1991) Ubiquitin immunore-activity in human malignant tumors. Br. J. Cancer 63, 320–322.

    CAS  Article  Google Scholar 

  15. 15.

    Iwaya, K., Nishibori, H., Osada, T., Matsuno, Y., Tsuda, H., Sato, S., Kono, H., Fukutomi, T, Suzuki, M., Torikata, C, Iwamatsu, A., Hirohashi, S. (1997) Immunoreaction at 43 kDa with anti-ubiquitin antibody in breast neoplasms. Jpn. J. Cancer Res. 88(3), 273–280.

    CAS  Article  Google Scholar 

  16. 16.

    Jennissen, H. P. (1995) Ubiquitin and the enigma of intracellular protein degradation. Eur. J. Biochem. 231, 1–30.

    CAS  Article  Google Scholar 

  17. 17.

    Kanayama, H., Tanaka, K., Aki, M., Kagawa, S., Miyaji, H., Satoh, M., Okada, F. (1991) Changes in expressions of proteasome and ubiquitin genes in human renal cancer cells. Cancer Res. 51, 6677–6685.

    CAS  PubMed  Google Scholar 

  18. 18.

    La Rosa, F. G., Kumar., S., Prasad, K. N. (1996) Increased expression of ubiquitin during adenosine 3′,5′-cyclic monophosphate-induced differentiation of neuroblastoma cells in culture. J. Neurochem. 66(5), 1845–1850.

    Article  Google Scholar 

  19. 19.

    Li, B., Dou, Q. P. (2000) Bax degradation by the ubiquitin/proteasome-dependent pathway: involvement in tumor survival and progression. Proc. Natl. Acad. Sci. USA 97(8), 3850–3855.

    CAS  Article  Google Scholar 

  20. 20.

    Longnecker, D. S., Roebuck, B. D., Yager, J. D., Lilja, H. S., Sigmund, B. (1981) Pancreatic carcinoma in azaserine-treated rats: induction, classification and dietary modulation of incidence. Cancer, 47, 1562–1572.

    CAS  Article  Google Scholar 

  21. 21.

    Longnecker, D. S. (1986) Experimental models of exocrine pancreatic tumors. In: Go, V. L. W., Gardner, J. D., Brooks, F. P., Lebenthal, E., Di Magno, E. P., Scheele, G. A. (eds) The exocrine pancreas biology, pathobiology and diseases. Raven Press, New York. pp. 443–458.

    Google Scholar 

  22. 22.

    Marin, F., Cheng, Z., Kovács, K. (1993) Ubiquitin immunoreactivity in corticotrophs following glucocorticoid treatment and in pituitary adenomas. Arch. Pathol. Lab. Med. 117, 254–258.

    CAS  PubMed  Google Scholar 

  23. 23.

    Marushige, Y., Marushige, K. (1995) Disappearance of ubiquitinated histone H2A during chromatin condensation in TGF beta 1-induced apoptosis. Anticancer Res. 15(2), 267–272.

    CAS  PubMed  Google Scholar 

  24. 24.

    Nishibori, H., Matsuno, Y., Iwaya, M., Osada, T., Kubomura, N., Iwamatsu, A., Kohno, H., Sato, S., Kitajima, M., Hirohashi, S. (1996) Human colorectal carcinomas specifically accumulate Mr 42.000 ubiquitin-conjugated cytokeratin 8 fragments. Cancer Res. 56(12), 2752–2757.

    CAS  PubMed  Google Scholar 

  25. 25.

    Osada, T., Sakamoto, M., Ishibori, H., Iwaya, K., Matsuno, Y., Muto, T., Hirohashi, S. (1997) Increased ubiquitin immunoreactivity in hepatocellular carcinomas and precancerous lesions of the liver. J. Hepatol. 26, 1266–1273.

    CAS  Article  Google Scholar 

  26. 26.

    Osada, T., Sakamoto, M., Nagawa, H., Yamamoto, J., Matsuno, Y., Iwamatsu, A., Muto, T., Hirohashi, S. (1999) Acquisition of glutamine synthetase expression in human hepatocarcinogenesis: relation to disease recurrence and possible regulation by ubiquitin-dependent proteolysis. Cancer 85(4), 819–831.

    CAS  Article  Google Scholar 

  27. 27.

    Réz, G., Tóth, S., Pálfia, Z. (1999) Cellular autophagic capacity is highly increased in azaserine-induced premalignant atypical acinar nodule cells. Carcinogenesis 20, 1893–1898.

    Article  Google Scholar 

  28. 28.

    Shimbara, N., Sato, C., Takashima, M., Tanaka, T., Tanaka K., Ichihara, A. (1993) Down-regulation of ubiquitin gene expression during differentiation of human leukemia cells. FEBS Letters 322(3), 235–239.

    CAS  Article  Google Scholar 

  29. 29.

    Soldatenkov, V. A., Dritschilo, A. (1997) Apoptosis of Ewing’s sarcoma cells is accompanied by accumulation of ubiquitinated proteins. Cancer Res. 57(18), 3881–3885.

    CAS  PubMed  Google Scholar 

  30. 30.

    Soldatenkov, V. A., Prasad, S., Voloshin, Y., Dritschilo, A. (1998) Sodium butyrate induces apoptosis and accumulation of ubiquitinated proteins in human breast carcinoma cells. Cell Death Differ. 5, 307–312.

    CAS  Article  Google Scholar 

  31. 31.

    Spataro, V., Norbury, C., Harris, A. L. (1998) The ubiquitin-proteasome pathway in cancer. Br. J. Cancer 77(3), 448–455.

    CAS  Article  Google Scholar 

  32. 32.

    Vassilev, A. P., Rasmussen, H. H., Christensen, E. I., Nielsen, S., Celis, J. E. (1995) The levels of ubiquitinated histone H2A are highly upregulated in transformed human cells: partial colocalization of uH2A clusters and PCNA/cyclin foci in fraction of cells in S-phase. J. Cell Csi. 108(3), 1205–1215.

    CAS  Google Scholar 

  33. 33.

    Weibel, E. R. (1969) Stereological principles for morphometry in electron microscopic cytology. Int. Rev. Cytol. 26, 235–302.

    CAS  Google Scholar 

  34. 34.

    Yager, J. D., Roebuck, B. D., Zurlo, J., Longnecker, D. S., Weselcouch, E. O., Wilpone, S. A. (1981) A single-dose protocol for azaserine initiation of pancreatic carcinogenesis in the rat. Int. J. Cancer 28, 601–606.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Réz.

Additional information

Dedicated to Professor János Kovács on the occasion of his 70th birthday

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tóth, S., Vastagh, C., Pálfia, Z. et al. Ubiquitin Cytochemical Changes During Azaserine-Initiated Pancreatic Carcinogenesis. BIOLOGIA FUTURA 52, 383–391 (2001). https://doi.org/10.1556/ABiol.52.2001.4.3

Download citation

Keywords

  • Ubiquitin
  • immunocytochemistry
  • morphometry
  • carcinogenesis
  • tumour progression