Advertisement

Acta Biologica Hungarica

, Volume 52, Issue 4, pp 383–391 | Cite as

Ubiquitin Cytochemical Changes During Azaserine-Initiated Pancreatic Carcinogenesis

  • S. Tóth
  • C. Vastagh
  • Z. Pálfia
  • G. RézEmail author
Article
  • 2 Downloads

Abstract

The ubiquitin (Ub)- proteasome proteolytic system is highly selective, and the specific proteins involved in cell division, growth, activation, signaling and transcription are degraded at different rate depending on the physio-pathological state of the cell. Ubiquitination serves first of all as a signal for protein degradation of short-lived and abnormal proteins under several stressful conditions. The immunocytochemical localization of Ub in some malignant tumours has recently been presented and differences in Ub expression has been observed during malignant transformation. Change in the level of Ub and Ub-conjugated proteins might reflect a higher metabolic-catabolic ratio in neoplastic cells. Most studies have been focused on the malignant stage of tumour progression, and only a few papers have dealt with the change in Ub and Ub-protein conjugates level during the whole progression. To address this problem, we applied an azaserine-induced pancreatic carcinogenesis model, in which premalignant and malignant stages were investigated throughout the progression. The level of Ub immunoreactivity was measured in nucleus and cytoplasm by electron microscopic immunocytochemical and morphometrical methods. We found a significant increase of Ub level in the nucleus and the cytoplasmic area in premalignant atypical acinar cell nodule (AACN) cells and in malignant adenocarcinoma in situ (CIS) cells at month 20 after initiation.

Keywords

Ubiquitin immunocytochemistry morphometry carcinogenesis tumour progression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, J., Palombella, V. J., Sausville, E. A., Johnson, J., Destree, A., Lazarus, D. D., Maas, J., Prakash, S., Elliott, P. J. (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 59(11), 2615–2622.PubMedGoogle Scholar
  2. 2.
    Alves-Rodrigues, A., Gregori, L., Figueiredo-Pereira, M. E. (1998) Ubiquitin, cellular inclusions and their role in neurodegeneration. Trends Neurosci. 21(12), 516–520.CrossRefGoogle Scholar
  3. 3.
    Arnold, J., Dawson, S., Fergusson, J., Lowe, J., Landor, M., Mayer, R. J. (1998) Ubiquitin and its role in neurodegeneration. Prog. Brain Res. 117, 23–34.CrossRefGoogle Scholar
  4. 4.
    Chau, V., Tobias, J. W., Bachmair, A., Marroiott, D., Ecker, D. J., Gonda, D. K., Varshavsky, A. (1989) A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243, 1576–1583.CrossRefGoogle Scholar
  5. 5.
    Ciechanover, A., DiGiuseppe, J. A., Bercovich, B., Orian, A., Richter, J. D., Schwartz, A. L., Brodeur, G. M. (1991) Degradation of nuclear oncoproteins by the ubiquitin system in vitro. Proc. Natl. Acad. Sci. USA 88, 139–143.CrossRefGoogle Scholar
  6. 6.
    Ciechanover, A. (1994) The ubiquitin-proteasome proteolytic pathway. Cell 79, 13–21.CrossRefGoogle Scholar
  7. 7.
    Ciechanover, A., Orian, A., Schwartz, A. L. (2000) The ubiquitin-mediated proteolytic pathway: mode of action and clinical implications. J. Cell Biochem. Suppl. 34, 40–51.CrossRefGoogle Scholar
  8. 8.
    Finch, J. S., John, T. S., Krieg, P., Bonham, K., Smith, H. T., Fried, V. A., Bowden, G. T. (1992) Overexpression of three ubiquitin genes in mouse epidermal tumors is associated with enhanced cellular proliferation and stress. Cell Growth Differ. 3, 269–278.PubMedGoogle Scholar
  9. 9.
    Finley, D., Ozhaynak, E., Varshavsky, A. (1987) The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48, 1035–1046.CrossRefGoogle Scholar
  10. 10.
    Galloway, P. G., Likavec, M. J. (1989) Ubiquitin in normal, reactive and neoplastic human astrocytes. Brain Res. 500, 343–351.CrossRefGoogle Scholar
  11. 11.
    Golab, J., Stoklosa, T., Czajka, A., Dabrowska, A., Jakobisiak, M., Zagozdon, R., Wojcik, C., Marczak, M., Wilk, S. (2000) Synergistic antitumor effects of a selective proteasome inhibitor and TNF in mice. Anticancer Res. 20(3A), 1717–1721.PubMedGoogle Scholar
  12. 12.
    Haas, A. L., Bright, P. M. (1985) The immunochemical detection and quantitation of intracellular ubiquitin-protein conjugates. J. Biol. Chem. 260, 12464–12473.PubMedGoogle Scholar
  13. 13.
    Hershko, A., Ciechanover, A. (1986) The ubiquitin pathway for the degradation of intracellular proteins. Prog. Nucleic Acid Res. Mol. Biol. 33, 19–56.CrossRefGoogle Scholar
  14. 14.
    Ishibashi, Y., Takada, K., Joh, K., Ohkawa, K., Aoki, T, Matsuda, M. (1991) Ubiquitin immunore-activity in human malignant tumors. Br. J. Cancer 63, 320–322.CrossRefGoogle Scholar
  15. 15.
    Iwaya, K., Nishibori, H., Osada, T., Matsuno, Y., Tsuda, H., Sato, S., Kono, H., Fukutomi, T, Suzuki, M., Torikata, C, Iwamatsu, A., Hirohashi, S. (1997) Immunoreaction at 43 kDa with anti-ubiquitin antibody in breast neoplasms. Jpn. J. Cancer Res. 88(3), 273–280.CrossRefGoogle Scholar
  16. 16.
    Jennissen, H. P. (1995) Ubiquitin and the enigma of intracellular protein degradation. Eur. J. Biochem. 231, 1–30.CrossRefGoogle Scholar
  17. 17.
    Kanayama, H., Tanaka, K., Aki, M., Kagawa, S., Miyaji, H., Satoh, M., Okada, F. (1991) Changes in expressions of proteasome and ubiquitin genes in human renal cancer cells. Cancer Res. 51, 6677–6685.PubMedGoogle Scholar
  18. 18.
    La Rosa, F. G., Kumar., S., Prasad, K. N. (1996) Increased expression of ubiquitin during adenosine 3′,5′-cyclic monophosphate-induced differentiation of neuroblastoma cells in culture. J. Neurochem. 66(5), 1845–1850.CrossRefGoogle Scholar
  19. 19.
    Li, B., Dou, Q. P. (2000) Bax degradation by the ubiquitin/proteasome-dependent pathway: involvement in tumor survival and progression. Proc. Natl. Acad. Sci. USA 97(8), 3850–3855.CrossRefGoogle Scholar
  20. 20.
    Longnecker, D. S., Roebuck, B. D., Yager, J. D., Lilja, H. S., Sigmund, B. (1981) Pancreatic carcinoma in azaserine-treated rats: induction, classification and dietary modulation of incidence. Cancer, 47, 1562–1572.CrossRefGoogle Scholar
  21. 21.
    Longnecker, D. S. (1986) Experimental models of exocrine pancreatic tumors. In: Go, V. L. W., Gardner, J. D., Brooks, F. P., Lebenthal, E., Di Magno, E. P., Scheele, G. A. (eds) The exocrine pancreas biology, pathobiology and diseases. Raven Press, New York. pp. 443–458.Google Scholar
  22. 22.
    Marin, F., Cheng, Z., Kovács, K. (1993) Ubiquitin immunoreactivity in corticotrophs following glucocorticoid treatment and in pituitary adenomas. Arch. Pathol. Lab. Med. 117, 254–258.PubMedGoogle Scholar
  23. 23.
    Marushige, Y., Marushige, K. (1995) Disappearance of ubiquitinated histone H2A during chromatin condensation in TGF beta 1-induced apoptosis. Anticancer Res. 15(2), 267–272.PubMedGoogle Scholar
  24. 24.
    Nishibori, H., Matsuno, Y., Iwaya, M., Osada, T., Kubomura, N., Iwamatsu, A., Kohno, H., Sato, S., Kitajima, M., Hirohashi, S. (1996) Human colorectal carcinomas specifically accumulate Mr 42.000 ubiquitin-conjugated cytokeratin 8 fragments. Cancer Res. 56(12), 2752–2757.PubMedGoogle Scholar
  25. 25.
    Osada, T., Sakamoto, M., Ishibori, H., Iwaya, K., Matsuno, Y., Muto, T., Hirohashi, S. (1997) Increased ubiquitin immunoreactivity in hepatocellular carcinomas and precancerous lesions of the liver. J. Hepatol. 26, 1266–1273.CrossRefGoogle Scholar
  26. 26.
    Osada, T., Sakamoto, M., Nagawa, H., Yamamoto, J., Matsuno, Y., Iwamatsu, A., Muto, T., Hirohashi, S. (1999) Acquisition of glutamine synthetase expression in human hepatocarcinogenesis: relation to disease recurrence and possible regulation by ubiquitin-dependent proteolysis. Cancer 85(4), 819–831.CrossRefGoogle Scholar
  27. 27.
    Réz, G., Tóth, S., Pálfia, Z. (1999) Cellular autophagic capacity is highly increased in azaserine-induced premalignant atypical acinar nodule cells. Carcinogenesis 20, 1893–1898.CrossRefGoogle Scholar
  28. 28.
    Shimbara, N., Sato, C., Takashima, M., Tanaka, T., Tanaka K., Ichihara, A. (1993) Down-regulation of ubiquitin gene expression during differentiation of human leukemia cells. FEBS Letters 322(3), 235–239.CrossRefGoogle Scholar
  29. 29.
    Soldatenkov, V. A., Dritschilo, A. (1997) Apoptosis of Ewing’s sarcoma cells is accompanied by accumulation of ubiquitinated proteins. Cancer Res. 57(18), 3881–3885.PubMedGoogle Scholar
  30. 30.
    Soldatenkov, V. A., Prasad, S., Voloshin, Y., Dritschilo, A. (1998) Sodium butyrate induces apoptosis and accumulation of ubiquitinated proteins in human breast carcinoma cells. Cell Death Differ. 5, 307–312.CrossRefGoogle Scholar
  31. 31.
    Spataro, V., Norbury, C., Harris, A. L. (1998) The ubiquitin-proteasome pathway in cancer. Br. J. Cancer 77(3), 448–455.CrossRefGoogle Scholar
  32. 32.
    Vassilev, A. P., Rasmussen, H. H., Christensen, E. I., Nielsen, S., Celis, J. E. (1995) The levels of ubiquitinated histone H2A are highly upregulated in transformed human cells: partial colocalization of uH2A clusters and PCNA/cyclin foci in fraction of cells in S-phase. J. Cell Csi. 108(3), 1205–1215.Google Scholar
  33. 33.
    Weibel, E. R. (1969) Stereological principles for morphometry in electron microscopic cytology. Int. Rev. Cytol. 26, 235–302.Google Scholar
  34. 34.
    Yager, J. D., Roebuck, B. D., Zurlo, J., Longnecker, D. S., Weselcouch, E. O., Wilpone, S. A. (1981) A single-dose protocol for azaserine initiation of pancreatic carcinogenesis in the rat. Int. J. Cancer 28, 601–606.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2001

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of General ZoologyEötvös Loránd UniversityBudapestHungary

Personalised recommendations