Advertisement

Acta Biologica Hungarica

, Volume 52, Issue 2–3, pp 249–263 | Cite as

Fungal Genotype Controls Mutualism and Sex in Brachypodium sylvaticum Infected by Epichloë sylvatica

  • G. Meijer
  • A. LeuchtmannEmail author
Article

Abstract

The fungal endophyte Epichloë sylvatica (Clavicipitaceae, Ascomycota) may obligatorily infect the woodland grass Brachypodium sylvaticum, on which it can display two alternative modes of reproduction. During the sexual cycle, external stromata suppress host flowering and production of seed (choke disease), whereas in the asexual cycle the fungus remains asymptomatic and transmits vertically by seeds. Variation in the reproductive system thus determines whether the symbiosis is mutualistic or parasitic. In order to assess the relative effects of each genotype on fungal reproduction, we used naturally infected seed families of B. sylvaticum and experimentally infected plants with different combinations of plant and fungal genotypes. The results of one experiment suggested a maternal effect of the host association on the choke rate in the offspring, while the results of a second experiment clearly indicated that the fungal genotype determines stroma formation and thus the mode of reproduction. Since sexual reproduction of the fungus is closely tied with disease expression on the host, the fungal genotype may also be responsible for whether an endophyte association is beneficial or pathogenic. We discuss the results in the light of current theories about the evolution of mutualism and the maintenance of sex.

Keywords

Endophyte evolution reproduction mode symbiosis transmission mode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexopoulos C. J., Mims C. W., Blackwell, M. (1996) Introductory Mycology. 4th/Ed. John Wiley & Sons, New York.Google Scholar
  2. 2.
    Bell, G. (1982) The masterpiece of nature: the evolution and genetics of sexuality. University of California Press, Berkley.Google Scholar
  3. 3.
    Breen, J. P. (1994) Acremonium endophyte interactions with enhanced plant resistance to insects. Annu. Rev. Entomol. 39, 401–423.CrossRefGoogle Scholar
  4. 4.
    Brem D., Leuchtmann, A. (1999) High prevalence of horizontal transmission of the fungal endophyte Epichloe sylvatica. Bull. Geobot. Inst. ETH 65, 3–12.Google Scholar
  5. 5.
    Brem D., Leuchtmann, A. (2001) Epichloe grass endophytes increase herbivore resistance in the woodland grass Brachypodium sylvaticum. Oecologia 126, 522–530.CrossRefGoogle Scholar
  6. 6.
    Bucheli E., Leuchtmann, A. (1996) Evidence for genetic differentiation between choke-inducing and asymptomatic strains of the Epichloe grass endophyte from Brachypodium sylvaticum. Evolution 50, 1879–1887.PubMedGoogle Scholar
  7. 7.
    Bultman, T. L. (1995) Mutualistic and parasitic interactions between Phorbia flies and Epichloe -convergence between a fungus and entomophilous Angiosperms. Can. J. Bot. 73, S1343–S1348.CrossRefGoogle Scholar
  8. 8.
    Bultman T. L., White J. F., Jr. (1988) “Pollination” of a fungus by a fly. Oecologia 75, 317–319.CrossRefGoogle Scholar
  9. 9.
    Bush L. P., Wilkinson H. H., Schardl, C. L. (1997) Bioprotective alkaloids of grass fungal endophyte symbioses. Plant Physiol. 114, 1–7.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chung, K.-R., Schardl, C. L. (1997) Sexual cycle and horizontal transmission of the grass symbiont, Epichloe typhina. Mycol. Res. 101, 295–301.CrossRefGoogle Scholar
  11. 11.
    Clay, K. (1987) Effects of fungal endophytes on the seed and seedling biology of Lolium perenne and Festuca arundinacea. Oecologia 73, 358–362.CrossRefGoogle Scholar
  12. 12.
    Clay, K. (1988) Clavicipitaceous endophytes of grasses: Coevolution and the change from parasitism to mutualism. In: Hawksworth D., Pirozynski, K. (eds) Coevolution of fungi with plants and animals. Academic Press, London, pp. 79–105.Google Scholar
  13. 13.
    Clay, K. (1990) The impact of parasitic and mutualistic fungi on competitive interactions among plants. In: Grace J. B., Tilman, D. (eds) Perspectives on plant competition. Academic Press, San Diego, pp. 391–412.Google Scholar
  14. 14.
    Clay K., Marks S., Cheplick, C. P. (1993) Effects of insect herbivory and fungal endophyte infection on competitive interactions among grasses. Ecology 74, 161–111CrossRefGoogle Scholar
  15. 15.
    Clayton W. D., Renvoize, S. A. (1986) Genera Graminum. Grasses of the world. Kew Bulletin Additional Series XIII, London.Google Scholar
  16. 16.
    Davies M. S., Long, G. L. (1991) Performance of two contrasting morphs of Brachypodium syl-vaticum transplanted into shaded and unshaded sites. J. Ecol. 79, 505–517.CrossRefGoogle Scholar
  17. 17.
    Elbersen H. W., West, C. P. (1996) Growth and water relations of field grown tall fescue as influenced by drought and endophyte. Grass Forage Sci. 51, 333–342.CrossRefGoogle Scholar
  18. 18.
    Frank, S. A. (1995) The origin of synergistic symbiosis. J. Prod. Agric. 176, 403 110.Google Scholar
  19. 19.
    Funk C. R., Belanger, F. C., Murphy, J. A. (1994) Role of endophytes in grasses used for turf and soil conservation. In: Bacon C. W., White W. F., Jr. (eds) Biotechnology of endophytic fungi of grasses. CRC Press, Boca Raton, Florida, USA, pp. 201–209.Google Scholar
  20. 20.
    Genkai Kato M., Yamamura, N. (1999) Evolution of mutualistic symbiosis without vertical transmission. Theoret. Pop. Biol. 55, 309–323.CrossRefGoogle Scholar
  21. 21.
    Gwinn K. D., Gavin, A. M. (1992) Relationship between endophyte infestation level of tall fescue seed lots and Rhizoctonia zeae seedling disease. Plant Dis. 76, 911–914.CrossRefGoogle Scholar
  22. 22.
    Hamilton, W. D. (1980) Sex versus non-sex versus parasite. Oikos 35, 282–290.CrossRefGoogle Scholar
  23. 23.
    Kimmons C. A., Gwinn K. D., Bernard, E. C. (1990) Nematode reproduction on endophyte-infect-ed and endophyte-free tall fescue. Plant Dis. 74, 757–761.CrossRefGoogle Scholar
  24. 24.
    Kirby, E. J. M. (1961) Host-parasites relations in the choke disease of grasses. Trans. Br. Mycol. Soc. 44, 493–503.CrossRefGoogle Scholar
  25. 25.
    Latch G. C. M., Christensen, M. J. (1985) Artificial infection of grasses with endophytes. Ann. Appl. Biol. 107, 17–24.CrossRefGoogle Scholar
  26. 26.
    Law R., Lewis, D. H. (1983) Biotic environments and the maintenance of sex- some evidence from mutualistic symbioses. Biol. J. Linn. Soc. 20, 249–276.CrossRefGoogle Scholar
  27. 27.
    Leuchtmann A., Clay, K. (1990) Isozyme variation in the Acremonium/Epichloe fungal endophyte complex. Phytopathology 80, 1133–1139.CrossRefGoogle Scholar
  28. 28.
    Leuchtmann A., Clay, K. (1997) The population biology of grass endophytes. Chapter 12. In: Carroll, G. C., Tudzynski, P. (eds) The Mycota, Vol. V. Part B, Plant Relationships. Springer, Berlin, pp. 185–202.CrossRefGoogle Scholar
  29. 29.
    Leuchtmann A., Schardl, C. L. (1998) Mating compatibility and phylogenetic relationships among two new species of Epichloe and other congeneric European species. Mycol. Res. 102, 1169–1182.CrossRefGoogle Scholar
  30. 30.
    Malinowski, D. Leuchtmann A., Schmidt D., Nosberger, J. (1997) Symbiosis with Neotyphodium uncinatum endophyte may increase the competitive ability of meadow fescue. Agron. J. 89, 833–839.CrossRefGoogle Scholar
  31. 31.
    Meijer G., Leuchtmann, A. (1999) Multistrain infections of the grass Brachypodium sylvaticum by its fungal endophyte Epichloe sylvatica. New Phytol. 141, 355–368.CrossRefGoogle Scholar
  32. 32.
    Meijer G., Leuchtmann, A. (2000) The effects of genetic and environmental factors on disease expression (stroma formation) and plant growth in Brachypodium sylvaticum infected by Epichloe sylvatica. Oikos 91, 446–458.CrossRefGoogle Scholar
  33. 33.
    Muller, H. J. (1964) The relation of recombination to mutational advance. Mutation Res. 1, 2–9.CrossRefGoogle Scholar
  34. 34.
    Nott H. M., Latch, G. C. M. (1993) A simple method of killing endophytes in ryegrass seed. In: Hume D. E., Latch G. C. M., Easton, H. S. (eds) Proceedings of the Second International Symposium on Acremonium/Grass Interactions. AgResearch, Grasslands Research Center, Palmer-ston North, New Zealand, pp. 14–15.Google Scholar
  35. 35.
    Schardl C. L., Phillips, T. D. (1997) Protective grass endophytes: Where are they from and where are they going? Plant Dis. 81, 430–438.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Schippmann, U. (1991) Revision der europaischen Arten der Gattung Brachypodium Palisot de Beauvois (Poaceae). Boissiera 45, 1–250.Google Scholar
  37. 37.
    Schuster R. P., Sikora R. A., Amin, N. (1995) Potential of endophytic fungi for the biological control of plant parasitic nematodes. Meded. Fac. Landbouwk. Toegep. Biol. Wetenschappen Univ. Gent 60, 1047–1052.Google Scholar
  38. 38.
    Searle, S. R. (1987) Linear models for unbalanced data. John Wiley and Sons, New York.Google Scholar
  39. 39.
    Siegel M. R., Bush, L. P. (1996) Defensive chemicals in grass-fungal endophyte associations. Recent Advances Phytochem. 30, 81–119.Google Scholar
  40. 40.
    Snedecor G. W., Cochran, W. G. (1989) Statistical methods. Iowa State University Press, Ames, Iowa.Google Scholar
  41. 41.
    Sun S., Clarke B. B., Funk, C. R. (1990) Effect of fertilizer and fungicide applications on choke expression and endophyte transmission in chewings fescue. In: Quisenberry S., Joost, R. (eds) Proceedings of the International Symposium on Acremonium/Grass Interactions. Louisiana Agric. Experim. Station, Baton Rouge, USA, pp. 62–66.Google Scholar
  42. 42.
    West, C. P. (1994) Physiology and drought tolerance of endophyte-infected grasses. In: Bacon C. W., White, J. E., Jr. (eds) Biotechnology of endophytic fungi of grasses. CRC Press, Boca Raton, Florida, USA, pp. 87–99.Google Scholar
  43. 43.
    White J. F., Jr. (1987) Widespread distribution of endophytes in the Poaceae. Plant Dis. 71, 340–342.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2001

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Geobotanisches InstitutETH-ZürichZürichSwitzerland

Personalised recommendations