Acta Biologica Hungarica

, Volume 52, Issue 2–3, pp 265–269 | Cite as

Cell Density-Correlated Induction of Pyruvate Decarboxylase Under Aerobic Conditions in the Yeast Pichia Stipitis

  • M. Mergler
  • U. KlinnerEmail author


During the aerobic batch cultivation of P. stipitis CBS 5776 with glucose, pyruvate decarboxylase was activated in a cell number-correlated manner. Activation started when a cell number between 7×107 and 1×108 cells ml−1 was reached and the enzyme activity increased during further cultivation. This induction might have been triggered either by an unknown quorum sensing system or by a shortage of cytoplasmic acetyl-CoA.


Pyruvate decarboxylase Pichia stipitis aerobic activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bergmeyer, H. U. (1977) Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim.Google Scholar
  2. 2.
    Bunn, H. F., Poyton, R. O. (1996) Oxygen sensing and molecular adaptation to hypoxia. Physiol. Rev. 76, 839–885.CrossRefGoogle Scholar
  3. 3.
    Dellweg, H., Rizzi, M., Methner, H., Debus, D. (1984) Xylose fermentation by yeasts, comparison of Pachysolen tannophilus and Pichia stipitis. Biotechnol. Lett. 6, 395–400.CrossRefGoogle Scholar
  4. 4.
    Flikweert, M. T., van der Zanden, L., Janssen, W. M. T. M., de Steensma, H. Y., van Dijken, J. P., Pronk, J. T. (1996) Pyruvate decarboxylase: An indispensable enzyme for growth of Saccharomyces cerevisiae on glucose. Yeast 12, 247–257.CrossRefGoogle Scholar
  5. 5.
    Flikweert, M. T., de Swaaf, M., van Dijken, J. P., Pronk, J. T. (1999) Growth requirements of pyru-vate-decarboxylase-negative Saccharomyces cerevisiae. FEMS Microbiol. Lett. 174, 73–79.CrossRefGoogle Scholar
  6. 6.
    Fuqua, W. C., Winans, S. C., Greenberg, E. P. (1994) Quorum sensing in bacteria: the luxR-luxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176, 269–275.CrossRefGoogle Scholar
  7. 7.
    Hahn-Hägerdal, B. (1996) Ethanolic fermentation of lignocellulose hydrolysates. Appl. Biochem. Biotechnol. 57, 195–199.CrossRefGoogle Scholar
  8. 8.
    Lu, P., Davis, B. P., Jeffries, T. W. (1998) Cloning and characterization of two pyruvate decarboxylase genes from Pichia stipitis CBS 6054. Appl. Environ. Microbiol. 64, 94–97.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Melake, T., Passoth, V., Klinner, U. (1996) Characterization of the genetic system of the xylose-fermenting yeast Pichia stipitis. Curr Microbiol. 33, 237–242.CrossRefGoogle Scholar
  10. 10.
    Passoth, V., Zimmermann, M., Klinner, U. (1996) Peculiarities of the regulation of fermentation and respiration in the Crabtree-negative, xylose-fermenting yeast Pichia stipitis. Appl. Biochem. Biotechnol. 57, 201–212.CrossRefGoogle Scholar
  11. 11.
    Passoth, V., Schäfer, B., Liebel, B., Weierstall, T., Klinner, U. (1998) Molecular cloning of alcohol dehydrogenase genes of the yeast Pichia stipitis and identification of the fermentative ADH. Yeast 14, 1311–1325.CrossRefGoogle Scholar
  12. 12.
    Skoog, K., Hahn-Hägerdahl, B. (1990) Effect of oxygenation on xylose fermentation by Pichia stipitis. Appl. Environ. Microbiol. 56, 3389–3394.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Wilken, M., Huchzermeyer, B. (1999) Suppression of mycelia formation by NO produced endoge-nously in Candida tropicalis. Eur. J. Cell Biol. 78, 209–213.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2001

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institut für Biologie IV (Mikrobiologie), Lehr- und Forschungsgebiet Angewandte Mikrobiologie, Worringer WegRWTHAachenGermany

Personalised recommendations