Community Ecology

, Volume 19, Issue 3, pp 211–222 | Cite as

Response of vegetation to fire disturbance: short-term dynamics in two savanna physiognomies

  • D. B. das ChagasEmail author
  • F. M. Pelicice


Fire is a constitutive ecological force in savanna ecosystems, but few studies have monitored its short-term effects on plant community dynamics. This study investigated changes in plant diversity in the South American savanna (Cerrado) after severe disturbance by fire. We monitored 30 permanent plots (10 m × 5 m) distributed in two Cerrado physiognomies (típico: more forested; ralo: grass-dominated), being 10 plots in the area disturbed by fire, and five in a preserved control area (undisturbed). From August 2010 to June 2011, we evaluated changes in species richness, abundance and composition of savanna vegetation. Monitoring started one week after the fire; disturbed plots were surveyed monthly, while control plots were surveyed every two months. We observed rapid reassembling in both physiognomies: plots affected by fire showed rapid increase in species richness and plant density during the first four months after the disturbance. Concerning species composition, disturbed plots in the cerrado típico tended to converge to control plots after one year, but each local assemblage followed particular temporal trajectories. A different pattern characterized cerrado ralo plots, which showed heterogeneous trajectories and lack of convergence between disturbed and control plots; the structure of these assemblages will likely change in next years. In conclusion, our results showed that fire significantly affected plant diversity in the two savanna physiognomies (cerrado típico and ralo), but also indicated that community reassembling is fast, with different dynamics between Cerrado physiognomies.


Cerrado Community assembly Composition Resilience Species richness Temporal trajectory 



Angiosperm Phylogeny Group

cerrado ralo


cerrado ralo control


cerrado típico


cerrado típico control



Repeated Measures-Analysis of variance


Non-metric MultiDimensional Scaling


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Álvarez-Yépiz, J.C., A. Martínez-Yrízar, A. Búrquez and C. Lindquist. 2008. Variation in vegetation structure and soil properties related to land use history of old-growth and secondary tropical dry forests in northwestern Mexico. Forest Ecol. Manag. 256:355–366.CrossRefGoogle Scholar
  2. Andela, N., D.C. Morton, L. Giglio, Y. Chen, G.R. van der Werf, PS. Kasibhatla, R.S. DeFries, G.J. Collatz, S. Hantson, S. Kloster, D. Bachelet, M. Forrest, G. Lasslop, F. Li, S. Mangeon, J.R. Melton, C. Yue and J.T. Randerson. 2017. A human-driven decline in global burned área. Science 356:1356–1362.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Archibald, S., D.P. Roy, B.W. van Wilgen and R.J. Scholes. 2009. What limits fire? An examination of drivers of burnt area in Southern Africa. Glob Change Biol. 15:613–630CrossRefGoogle Scholar
  4. Bond, W.J. and J.E. Keeley. 2005. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 20(7):387–394.CrossRefGoogle Scholar
  5. Booth, B.D. and C.J. Swanton. 2002. Assembly theory applied to weed communities. Weed Sci. 50:2–13.CrossRefGoogle Scholar
  6. Bremer, B., K. Bremer and M. Chase. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 181:1–20.Google Scholar
  7. Bruno, J.F., J.J. Stachowicz and M.D. Bertness. 2003. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18(3):119–125.CrossRefGoogle Scholar
  8. Cardoso, E., M.I.C. Moreno, E.M. Bruna and H.L. Vasconcelos. 2009. Mudanças fitofisionômicas no Cerrado: 18 anos de sucessão ecológica na estação ecológica do Panga, Uberlândia. Caminhos de Geografia, Uberlândia. 10(32):254–268.Google Scholar
  9. Chase, J.M. 2003. Community assembly: when should history matter? Oecologia 136:489–498CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chazdon, R. 2012. Regeneração de florestas tropicais. Cienc. Nat. 7(3):195–218.Google Scholar
  11. Colwell R.K. 2009. EstimateS: statistical estimation of species richness and shared species from samples. Version 8.2. User’s guide and application published at:
  12. Connell, J.H. and R.O. Slatyer. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat. 111:1119–1144.CrossRefGoogle Scholar
  13. Davis, M.A., J.P Grime and K. Thompson. 2000. Fluctuating resources in plant communities: a general theory of invisibility. J. Ecol. 88:528–534.CrossRefGoogle Scholar
  14. Drake, J.A. 1990. Communities as assembled structures: do rules govern pattern? Trends Ecol. Evol. 5(5):159–164.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Durigan, G. and J.A. Ratter. 2016. The need for a consistent fire policy for Cerrado conservation. J. Appl. Ecol. 53:11–15CrossRefGoogle Scholar
  16. Ejrnaes, R., H.H. Bruun and B.J. Graae. 2006. Community assembly in experimental grasslands: suitable environment or timely arrival? Ecology 87(5):1225–1233.CrossRefGoogle Scholar
  17. Fargione, J., C.S. Brown and D. Tilman. 2003. Community assembly and invasion: An experimental test of neutral versus niche processes. Proc. Natl. Acad. Sci. USA 100(15):8916–8920.CrossRefGoogle Scholar
  18. Felfili, J.M., F.A. Carvalho and R.F. Haidar. 2005. Manual para o monitoramento de parcelas permanentes nos biomas cerrado e pantanal — Brasília: Universidade de Brasília, Departamento de Engenharia Florestal.Google Scholar
  19. Ferreira, J., L.E.O.C. Aragão, J. Barlow, P. Barreto, E. Berenguer, M. Bustamante, T.A. Gardner, A.C. Lees, A. Lima, J. Louzada, R. Pardini, L. Parry, C.A. Peres, PS. Pompeu, M. Tabarelli and J. Zuanon. 2014. Brazil’s environmental leadership at risk. Science 346:706–707.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Frizzo, T.L.M., C. Bonizário, M.P Borges and H.L. Vasconcelos. 2011. Revisão dos efeitos do fogo sobre a fauna de formações savânicas do Brasil. Oecologia Australis 15(2):365–379.CrossRefGoogle Scholar
  21. Fukami, T., T.M. Bezemer, S.R. Mortimer and W.H. van der Putten. 2005. Species divergence and trait convergence in experimental plant community assembly. Ecol. Lett. 8(12):1283–1290.CrossRefGoogle Scholar
  22. Goedert, W.J., E. Wagner and A.O. Barcellos. 2008. Savanas Tropicais: dimensão, histórico e perspectiva. In: Faleiro, F.G and A.L. Farias Neto (eds.), Savanas: desafios e estratégias para o equilíbrio entre sociedade, agronegócio e recursos naturais. EMBRAPA Cerrados, Planaltina. pp. 48–77.Google Scholar
  23. Govender, N., W.S.W. Trollope and B.W. van Wilgen. 2006. The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa. J. Appl. Ecol. 43(4):748–758.CrossRefGoogle Scholar
  24. Gowlett, J.A.J and R.W. Wrangham. 2013. Earliest fire in Africa: towards the convergence of archaeological evidence and the cooking hypothesis. Azania 48(1):5–30.CrossRefGoogle Scholar
  25. Hammer, Q., D.A.T. Harper and PD. Ryan. 2001. Past: Paleontologia Statistics software package for education and data analysis. Paleontologia Electronica 4(1):1–9.Google Scholar
  26. Heringer, I. and A.V.A. Jacques. 2001. Adaptação das plantas ao fogo: enfoque na transição floresta — campo. Cienc. Rural. 31(6):1085–1090.CrossRefGoogle Scholar
  27. Hoffmann, W.A. 1996. The effects of fire and cover on seedling establishment in a neotropical savanna. J. Ecol. 84(3):383–393.CrossRefGoogle Scholar
  28. Hoffmann, W.A. 1998. Post-burn reproduction of woody plants in a neotropical savanna: the relative importance of sexual and vegetative reproduction. J. Appl. Ecol. 35(3):422–433.CrossRefGoogle Scholar
  29. Hoffmann, W.A. 1999. Fire and population dynamics of woody plants in a neotropical savanna: matrix model projections. Ecology 80(4):1354–1369.CrossRefGoogle Scholar
  30. Hoffmann, W.A. 2000. A. Post-establishment seedling success in the brazilian Cerrado: a comparison of savanna and forest species. Biotropica 32(1):62–69.Google Scholar
  31. Hubbell, S.P 2006. Neutral theory and the evolution of ecological equivalence. Ecology 87(6):1387–1398.CrossRefGoogle Scholar
  32. INPE — Instituto Nacional de Pesquisas Espaciais, 2018. Portal do Monitoramento de Queimadas e Incêndios. Available from Accessed 26 March 2018.
  33. Kammesheidt, L. 1999. Forest recovery by root suckers and aboveground sprouts after slash-and-burn agriculture, fire and logging in Paraguay and Venezuela. J. Trop. Ecol. 15(02):143–157.CrossRefGoogle Scholar
  34. Keddy, PA. 1992. Assembly and response rules: two goals for predictive community ecology. J. Veg. Sci. 3:157–164.CrossRefGoogle Scholar
  35. Kennard, D.K., K. Gould, F.E. Putz, T.S. Fredericksen and F. Morales. 2002. Effect of disturbance intensity on regeneration mechanisms in a tropical dry forest. Forest Ecol. Manag. 162:197–208.CrossRefGoogle Scholar
  36. Klink, C.A. and R.B.A. Machado. 2005. Conservação do Cerrado brasileiro. Megadiversidade 1(1):147–145.Google Scholar
  37. Kraft, N.J.B., PB. Adler, O. Godoy, E.C James, S. Fuller and J.M. Levine. 2015. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29:592–599.CrossRefGoogle Scholar
  38. Lapola, D.M., L.A. Martinelli, C.A. Peres, J.P.H.B. Ometto, M.E. Ferreira, C.A. Nobre, A.P.D. Aguiar, M.M.C.L Bustamante, M.F. Cardoso, M.H. Costa, C.A. Joly, C.C. Leite, P. Moutinho, G. Sampaio, B.B.N. Strassburg and I.C.G. Vieira. 2014. Pervasive transition of the Brazilian land-use system. Nat. Clim. Change 4:27–35.CrossRefGoogle Scholar
  39. Lees, A.C., C.A. Peres, P.M. Fearnside, M. Schneider and J.A.S. Zuanon. 2016. Hydropower and the future of Amazonian biodiversity. Biodivers. Conserv. 25(3):451–466.CrossRefGoogle Scholar
  40. Lima, R.A.F. 2005. Estrutura e regeneração de clareiras em Florestas Pluviais Tropicais. Braz. J. Bot. 28(4):651–670.CrossRefGoogle Scholar
  41. Lima, E.S., H.S. Lima and J.A. Ratter. 2009. Mudanças pós-fogo na estrutura e composição da vegetação lenhosa, em um Cerrado mesotrófico, no período de cinco anos (1997–2002) em Nova Xavantina — MT. Cerne 15(4):468–480.Google Scholar
  42. Lopes, S.F., V.S. Vale and I. Schiavini. 2009. Efeito de queimadas sobre a estrutura e composição da comunidade vegetal lenhosa do Cerrado sentido restrito em Caldas Novas, GO. Rev. Árvore 33(4):695–704.CrossRefGoogle Scholar
  43. Lortie, C.J., R.W. Brooker, P. Choler, Z. Kikvidze, R. Michalet, F.I Pugnaire. and R.M. Callaway. 2004. Rethinking plant community theory. Oikos 107 (2):433–438.CrossRefGoogle Scholar
  44. Miranda, H.S., M.M.C. Bustamante and A.C. Miranda. 2002. The fire factor. In: Oliveira, PS. and Marquis, R.J. (eds.), The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna. Columbia University Press. pp. 51–68.Google Scholar
  45. Mittermeier, R.A., PR. Gil, M. Hoffmann, J. Pilgrim, T. Brooks, C.G. Mittermeier, J. Lamoreaux and G.A.B. Fonseca. 2005. Hotspots Revisited: Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions. Conservation International, New York.Google Scholar
  46. Moreira, A.G. 2000. Effects of fire protection on savanna structure in Central Brazil. J. Biogeogr. 27:1021–1029.CrossRefGoogle Scholar
  47. Nappo, M.E., J.J. Griffith, S.V. Martins, P.M. Júnior, A.L. Souza and A.T. Oliveira-Filho. 2005. Diametric struture dynamics for tree and shrub natural regeneration understory within pure stands of Mimosa scabrella Bentham. planted on a mined-out site at Poços de Caldas, Minas Gerais state. Rev. Árvore 29(1):35–46.CrossRefGoogle Scholar
  48. Nunes, R.V., M.C. Silva-Júnior, J.M. Felfili and B.M.T. Walter. 2002. Intervalos de classe para abundância, dominância e freqüência do componente lenhoso do cerrado sentido restrito no Distrito Federal. Rev. Árvore 26(2):173–182.Google Scholar
  49. Pivello, V.R. and L.M. Coutinho. 1992. Transfer of macronutrients to the atmosphere during experimental burnings in an open cerrado (Brazilian savanna). J. Trop. Ecol. 8:487–497.CrossRefGoogle Scholar
  50. Pivello, V.R. 2011. The use of fire in the cerrado and amazonian rainforests of Brazil: past and present. Fire Ecol. 7(1):24–39.CrossRefGoogle Scholar
  51. Ribeiro, J.F. and B.M.T. Walter. 2008. As Principais Fitofisionomias do Bioma Cerrado. In: Sano S.M., S.P. Almeida and J.F. Ribeiro. (eds.), Cerrado: ecologia e flora. Vol. 1. Embrapa Informação Tecnológica, Brasília. pp. 153–212.Google Scholar
  52. Rodrigues, G.B., K.L. Maltoni and A.M.R. Cassiolato. 2007. Dinâmica da regeneração do subsolo de áreas degradadas dentro do bioma Cerrado. AGRIAMBI 11:1, 73–80.Google Scholar
  53. Salles, J.C. and I. Schiavini. 2007. Estrutura e composição do estrato de regeneração em um fragmento florestal urbano: implicações para a dinâmica e a conservação da comunidade arbórea. Acta Bot. Bras. 21(1):223–233.CrossRefGoogle Scholar
  54. Sano, E.E., R. Rosa, J.L.S. Brito and L.G. Ferreira. 2008. Mapeamento semidetalhado do uso da terra do Bioma Cerrado. PAB — Pesquisa Agropecuária Brasileira 43(1):153–156.CrossRefGoogle Scholar
  55. Sarmiento, G. 1984. The Ecology of Neotropical Savannas. Harvard University Press, Cambridge.CrossRefGoogle Scholar
  56. Schmidt, I.B., A.B. Sampaio and E.F. Borghetti. 2005. Efeitos da época de queima sobre a reprodução sexuada e estrutura populacional de Heteropterys pteropetala (Adr. Juss.), Malpighiaceae, em áreas de Cerrado sensu stricto submetidas a queimas bienais. Acta Bot. Bras. 19(4):927–934Google Scholar
  57. Scholes, R.J. and S.R. Archer. 1997. Tree-grass interactions in savannas. Annu. Rev. Ecol. Evol. Syst. 28:517–44.CrossRefGoogle Scholar
  58. Silva, D.M., P.P. Loiola, N.B. Rosatti, I.A. Silva, M.V. Cianciaruso and M.A. Batalha. 2011. Os Efeitos dos Regimes de Fogo sobre a Vegetação de Cerrado no Parque Nacional das Emas, GO: Considerações para a Conservação da Diversidade. BioBrasil 1(2):26–39.Google Scholar
  59. Soares, J.J., M.H.A.O. Souza and M.I.S. Lima. 2006. Twenty years of post-fire plant succession in a “cerrado”, São Carlos, Sp, Brazil. Braz. J. Biol. 66(2B):587–602.CrossRefGoogle Scholar
  60. STATSOFT, Inc. 2004. Statistica (data analysis software system), version 7.
  61. Staver, A. C., S. Archibald and S.A. Levin. 2011. The global extent and determinants of savanna and forest as alternative biome states. Science 334:230–232.CrossRefGoogle Scholar
  62. Tilman, D. 2004. Niche tradeoffs, neutrality, and community structure: A stochastic theory of resource competition, invasion, and community assembly. Proc. Natl. Acad. Sci. USA 101(30):10854–10861.CrossRefGoogle Scholar
  63. Uhlmann, A., F. Galvão and S.M. Silva. 1998. Análise da estrutura de duas unidades fitofisionômicas de savana (Cerrado) no sul do Brasil. Acta Bot. Bras. 12(3):231–247.CrossRefGoogle Scholar
  64. Valkó, O, P. Török, B. Deák and B. Tóthmérész. 2014. Prospects and limitations of prescribed burning as a management tool in European grasslands. Basic Appl. Ecol. 15:26–33.CrossRefGoogle Scholar
  65. Valkó, O., A. Kelemen, T. Miglécz, P. Török, B. Deák, K. Tóth, J.P. Tóth and B. Tóthmérész. 2018. Litter removal does not compensate detrimental fire effects on biodiversity in regularly burned semi-natural grasslands. Sci. Total Environ. 622–623:783–789.CrossRefGoogle Scholar
  66. van Wilgen, B.W., N. Govender, H.C. Biggs, D. Ntsala and X.N. Funda. 2004. Response of savanna fire regimes to changing fire management policies in a large African National Park. Conserv. Biol. 18(6):1533–1540CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2018

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Botânica – PPGBotUniversidade Estadual de Feira de SantanaBahia, BrasilBrazil
  2. 2.Núcleo de Estudos AmbientaisUniversidade Federal do TocantinsPorto NacionalBrazil

Personalised recommendations