Community Ecology

, Volume 19, Issue 2, pp 168–175 | Cite as

Viral metacommunities associated to bats and rodents at different spatial scales

  • F. Nieto-Rabiela
  • G. Suzán
  • A. Wiratsudakul
  • O. Rico-ChávezEmail author
Open Access


One of the main goals of community ecology is to measure the relative importance of environmental filters to understand patterns of species distribution at different temporal and spatial scales. Likewise, the identification of factors that shape symbiont metacommunity structures is important in disease ecology because resulting structures drive disease transmission. We tested the hypothesis that distributions of virus species and viral families from rodents and bats are defined by shared responses to host phylogeny and host functional characteristics, shaping the viral metacommunity structures at four spatial scales (Continental, Biogeographical, Zoogeographical, and Regional). The contribution of host phylogeny and host traits to the metacommunity of viruses at each spatial scale was calculated using a redundant analysis of canonical ordering (RDA). For rodents, at American Continental scale the coherence of viral species metacommunity increased while the spatial scale decreased and Quasi-Clementsian structures were observed. This pattern suggests a restricted distribution of viruses through their hosts, while in the Big Mass (Europe, Africa, and Asia), the coherence decreased as spatial scale decreased. Viral species metacommunities associated with bats was dominated by random structures along all spatial scales. We suggest that this random pattern is a result of the presence of viruses with high occupancy range such as rabies (73%) and coronavirus (27%), that disrupt such structures. At viral family scale, viral metacommunities associated with bats showed coherent structures, with the emergence of Quasi- Clementsian and Checkerboard structures. RDA analysis indicates that the assemblage of viral diversity associated with rodents and bats responds to phylogenetic and functional characteristics, which alternate between spatial scales. Several of these variations could be subject to the spatial scale, in spite of this, we could identify patterns at macro ecological scale. The application of metacommunity theory at symbiont scales is particularly useful for large-scale ecological analysis. Understanding the rules of host-virus association can be useful to take better decisions in epidemiological surveillance, control and even predictions of viral distribution and dissemination.


Biogeographic scale Disease ecology Host environmental filtering Niche theory Zoogeographic scale 



We are very grateful to PAPIIT (Project IA206416), Programa de Apoyo de los Estudios de Posgrado, UNAM, CONACYT, and Laboratorio de Ecología de Enfermedades y Una Salud, FMVZ, UNAM, especially to M. López Santana and D. Mendizabal Castillo for their contribution in databases construction.

Supplementary material

42974_2018_19020168_MOESM1_ESM.pdf (20 kb)
Supplementary material, approximately 21 KB.


  1. Bininda-Emonds, O.R.P., M. Cardillo, K.E. Jones, R.D.E. Macphee, R.M.D. Beck, R. Grenyer, S.A. Price, R.A. Vos, J.L. Gittleman and A. Purvis. 2007. The delayed rise of present-day mammals. Nature 446:507–512.PubMedPubMedCentralGoogle Scholar
  2. Buckley, L.B., T.J. Davies, D.D. Ackerly, N.J.B. Kraft, P. Susan, B.L. Anacker, H.V Cornell, E.I. Damschen, J. Grytnes, B.A. Hawkins, C.M. Mccain, P.R. Stephens and J.J. Wiens. 2010. Phylogeny, niche conservatism and the latitudinal diversity gradient in mammals. Proc. Roy. Soc. Lond. B. Biol. Sci. 277:rspb20100179.Google Scholar
  3. Chase, J.M. and J.A. Myers. 2011. Disentangling the importance of ecological niches from stochastic processes across scales. Phil. Trans. Royal Soc. B: Biol. Sci. 366:2351–2363.CrossRefGoogle Scholar
  4. Chave, J. 2004. Neutral theory and community ecology. Ecol. Lett. 7:241–253.CrossRefGoogle Scholar
  5. Córdova-Tapia, F. and L. Zambrano. 2015. La diversidad funcional en la ecología de comunidades. Revista Ecosistemas 24:78–87.CrossRefGoogle Scholar
  6. Cox, B. 2001. The biogeographic regions reconsidered. J. Biogeogr. 28:511–523.CrossRefGoogle Scholar
  7. Dallas, T. 2014. Metacom: An R package for the analysis of metacommunity structure. Ecography 37:402–405.CrossRefGoogle Scholar
  8. Dallas, T. and S.J. Presley. 2014. Relative importance of host environment, transmission potential and host phylogeny to the structure of parasite metacommunities. Oikos 123:866–874.CrossRefGoogle Scholar
  9. Davies, T.J. and A.B. Pedersen. 2008. Phylogeny and geography predict pathogen community similarity in wild primates and humans. Proc. Royal Soc. B: Biol. Sci. 275:1695–1701.CrossRefGoogle Scholar
  10. Drexler, J.F., F. Gloza-Rausch, J. Glende, V.M. Corman, D. Muth, M. Goettsche, A. Seebens, M. Niedrig, S. Pfefferle, S. Yordanov, L. Zhelyazkov, U. Hermanns, P. Vallo, A. Lukashev, M.A. Muller, H. Deng, G. Herrler and C. Drosten. 2010. Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J. Virology 84:11336–11349.CrossRefGoogle Scholar
  11. Gaston, K.J. 2000. Global patterns in biodiversity. Nature 405:220–227.CrossRefGoogle Scholar
  12. Gonzalez, A. 2009. Metacommunities: Spatial Community Ecology. Encyclopedia of Life Sciences:1–8.Google Scholar
  13. Gorman, O.T., W.J. Bean and R.G. Webster. 1992. Evolutionary processes in influenza viruses: divergence, rapid evolution, and stasis. In: Holland, J.J. (ed.), Genetic Diversity of RNA Viruses. Springer, Berlin. pp. 75–97.CrossRefGoogle Scholar
  14. Guernier, V., M.E. Hochberg and J.F. Guégan. 2004. Ecology drives the worldwide distribution of human diseases. PLoS Biology 2:e141.CrossRefGoogle Scholar
  15. Harvell, C.D., C.E. Mitchell, J.R. Ward, S. Altizer, A.P. Dobson, R.S. Ostfeld and M.D. Samuel. 2002. Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162.CrossRefGoogle Scholar
  16. Holt, B.G., J.-P. Lessard, M.K. Borregaard, S.A. Fritz, M.B. Araujo, D. Dimitrov, P.-H. Fabre, C.H. Graham, G.R. Graves, K.A. Jonsson, D. Nogues-Bravo, Z. Wang, R.J. Whittaker, J. Fjeldsa and C. Rahbek. 2013. Response to comment on “An Update of Wallace’s Zoogeographic Regions of the World.” Science 341:343–343.CrossRefGoogle Scholar
  17. Hubbell, S.P. 2005. Neutral theory in community ecology and the hypothesis of functional equivalence. Funct. Ecol. 19:166–172.CrossRefGoogle Scholar
  18. Jaisson, P.C. 2000. La hormiga y el sociobiólogo. (No. 304.5 J3). México.Google Scholar
  19. Johnson, P.T.J., J.C. De Roode, and A. Fenton. 2016. Why infectious disease research needs community ecology. Science 349:1259504.CrossRefGoogle Scholar
  20. Jones, K.E., J. Bielby, M. Cardillo, S. Fritz, J. O’Dell, C.D. L. Orme, K. Safi, W. Sechrest, E.H. Boakes, C. Carbone, C. Connolly, M. J. Cutts, J.K. Foster, R. Grenyer, M. Habib, C. Plaster, S. Price, E. Rigby, J. Rist, A. Teacher, O.R.P. Bininda-Emonds, J. L. Gittleman, G.M. Mace and A. Purvis. 2009. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90:2648–2648.CrossRefGoogle Scholar
  21. Kaufman, D.M. 1995. Diversity of new world mammals: universality of the latitudinal gradients of species and bauplans. J. Mammal. 76:322–334.CrossRefGoogle Scholar
  22. Krasnov, B.R., S. Pilosof, M. Stanko, S. Morand, N.P. Korallo-Vinarskaya, M.V. Vinarski and R. Poulin. 2014. Co-occurrence and phylogenetic distance in communities of mammalian ectoparasites: Limiting similarity versus environmental filtering. Oikos 123:63–70.CrossRefGoogle Scholar
  23. Leibold, M.A., M. Holyoak, N. Mouquet, P. Amarasekare, J.M. Chase, M.F. Hoopes, R.D. Holt, J.B. Shurin, R. Law, D. Tilman, M. Loreau and A. Gonzalez. 2004. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 7:601–613.CrossRefGoogle Scholar
  24. Leibold, M.A. and G.M. Mikkelson. 2002. Coherence, species turnover, and boundary clumping: elements of meta-community structure. Oikos 97:237–250.CrossRefGoogle Scholar
  25. Lorencio, C.G. 2007. Avances en ecología: hacia un mejor conocimiento de la naturaleza. Secretariado de Publicaciones de la Universidad de Sevilla.Google Scholar
  26. Lovejoy, T.E., R.O. Bierregaard, A.B. Rylands and M.J.R. 1986. Edge and other effects of isolation on Amazon forest fragments. In: M.E. Solé (ed.), The Science of Scarcity and Diversity. Sinauer, Sunderland, Massachusetts. pp. 257–284.Google Scholar
  27. Luis, A.D., D.T.S. Hayman, T.J. O’Shea, P. M. Cryan, A.T. Gilbert, J. R.C. Pulliam, J.N. Mills, M.E. Timonin, C.K.R. Willis, A.A. Cunningham, A.R. Fooks, C.E. Rupprecht, J.L.N. Wood and C. T. Webb. 2013. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc. Royal Soc.B: Biol. Sci. 280:20122753.Google Scholar
  28. Luis, A.D., T.J. O’Shea, D.T.S. Hayman, J.L.N. Wood, A.A. Cunningham, A.T. Gilbert, J.N. Mills and C.T. Webb. 2015. Network analysis of host-virus communities in bats and rodents reveals determinants of cross-species transmission. Ecol. Lett. 18:1153–1162.CrossRefGoogle Scholar
  29. Mihaljevic, J R. 2012. Linking metacommunity theory and symbiont evolutionary ecology. Trends Ecol. Evol. 27:323–329.CrossRefGoogle Scholar
  30. Morand, S. and B.R. Krasnov. 2010. The Biogeography of Host–Parasite Interactions. Oxford University Press, Oxford.Google Scholar
  31. Oksanen, A.J., F.G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. Mcglinn, P.R. Minchin, R.B.O. Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens and E. Szoecs. 2016. Package “vegan” (Version 2.4-0). URL,
  32. Peres-Neto, P.R., P. Legendre, S. Dray and D. Borcard. 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625.CrossRefGoogle Scholar
  33. Presley, S.J., C.L. Higgins and M.R. Willig. 2010. A comprehensive framework for the evaluation of metacommunity structure. Oikos 119:908–917.CrossRefGoogle Scholar
  34. R Core Team. 2017. R: A language and environment for statistical computing. RStudio, Inc., Boston, MA.Google Scholar
  35. Rahbek, C. and G.R. Graves. 2001. Multiscale assessment of patterns of avian species richness. Proc. Nat. Acad. Sci. 98:4534–4539.CrossRefGoogle Scholar
  36. Streicker, D.G., S. Turmelle, M.J. Vonhof, I.V Kuzmin, G.F. McCracken and C.E. Rupprecht. 2010. Host phylogeny constrains cross-species emergence and establishment of rabies virus in bats. Science 329:676–679.CrossRefGoogle Scholar
  37. Suzán, G., G.E. García-Peña, I. Castro-Arellano, O. Rico, A.V. Rubio, M.J. Tolsá, B. Roche, P.R. Hosseini, A. Rizzoli, K.A. Murray, C. Zambrana-Torrelio, M. Vittecoq, X. Bailly, A.A. Aguirre, P. Daszak, A.H. Prieur-Richard, J.N. Mills and J.F. Guégan. 2015. Metacommunity and phylogenetic structure determine wildlife and zoonotic infectious disease patterns in time and space. Ecol. Evol. 5:865–873.CrossRefGoogle Scholar
  38. Urteaga, L. 1993. La Teoría De Los Climas Y Los Orígenes Del Ambientalismo. Cuadernos criticos de geografia humana XVIII:1–36.Google Scholar
  39. Woolhouse, M.E.J. 2001. Population biology of multihost pathogens. Science 292:1109–1112.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2018

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited, you give a link to the Creative Commons License, and indicate if changes were made.

Authors and Affiliations

  • F. Nieto-Rabiela
    • 1
  • G. Suzán
    • 1
  • A. Wiratsudakul
    • 2
  • O. Rico-Chávez
    • 1
    Email author
  1. 1.Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y ZootecniaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
  2. 2.Department of Clinical Sciences and Public Health, Faculty of Veterinary ScienceMahidol UniversityNakhon PathomThailand

Personalised recommendations