Classification of plant communities and fuzzy diversity of vegetation systems

Abstract

After stressing the need to keep separated the concept of variability and/or inequality and dissimilarity from that of diversity, it is suggested that diversity of a system should be measured primarily by the number of different classes (K) we can define in it (richness) by classification or identification processes. An index δ, ranging between 0 and 1, that summarizes the similarity pattern within the system, can be used if necessary to transform K to a “fuzzy” diversity number, according to the idea that the higher is the similarity within the system the lower should be its diversity. Another index, ρ, is proposed to measure the “loss” of diversity due to similarity within the system, an index that fits the concept of “redundancy”. Since every diversity vector may be interpreted as a crisp symmetric similarity matrix, of which the Gini-Simpson’s index is the average dissimilarity, while the index of Shannon is the entropy of its eigenvalues, the index δ can be chosen to quantify one among the following similarities: a) the overall average similarity of the classes considering the within classes similarity equal to 1 and the between classes similarity equal to 0 (crisp similarity pattern): this is coincident with the evenness of the proportion of importance of the classes, b) the average similarity between the classes without considering evenness, or c) the combination of the two similarities (similarity between the classes and evenness). In these last two cases, the similarity between the classes is characterizing the similarity pattern of a system in a fuzzy way (fuzzy diversity). It is stressed that the diversity of vegetation systems may be of two complementary types: plant individual-based diversity and plant community-based diversity. If we assume that each plant community type corresponds to one habitat then habitat diversity (or niche width) can be calculated for each class of plant individuals according to the number of classes of plant communities in which we can find it. Habitat diversity can be used to measure the indicator value of species or other classes of plant individuals and of plant communities. In this last case, we have to consider the distribution of plant communities in classes defined by environmental factors. It is suggested that the terminology alpha, beta, gamma diversity can be useful only if used to distinguish types of diversity in vegetation systems: alpha diversity = plant individual based diversity, gamma diversity = the union of alpha diversities, beta diversity = plant community based diversity. Thanks to the availability of mathematical tools, it is concluded that rather than being worried about measuring diversity it would be more fruitful to worry about why we are willing to measure it.

References

  1. Allen, T.F.H. and T.B. Starr. 1982. Hierarchy: Perspectives for Ecological Complexity. University of Chicago Press, Chicago.

    Google Scholar 

  2. Anderson, M.J., T.O. Crist, J.M. Chase, M. Vellend, B.D. Inouye, A.L. Freestone, N.J. Sanders, H.V. Cornell, L.S. Comita, K.F. Davies, S.P. Harrison, N.J.B. Kraft, J.C. Stegen and N.G. Swenson. 2011. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14:19–28.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Avena, G.C., Blasi, E. Feoli and A. Scoppola. 1981. Measurement of the predictive value of species lists for species cover in phytosociological samples. Vegetatio 45:77–84.

    Article  Google Scholar 

  4. Biondi, E., E. Feoli and V. Zuccarello 2004. Modelling environmental responses of plant associations: a review of some critical concepts in vegetation study. Crit. Rev. Plant. Sci. 23:149–156.

    Google Scholar 

  5. Biondini, M.E., P.W. Mielke Jr. and E.F. Redente. 1991. Permutation techniques based on Euclidean analysis spaces: A new and powerful statistic method for ecological research. In: E. Feoli and L. Orlóci (eds), Computer assisted vegetation analysis. Kluwer, Boston. pp. 221–240.

    Chapter  Google Scholar 

  6. Botta-Dukát, Z. 2005. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J. Veg. Sci. 16:533–540.

    Google Scholar 

  7. Braun-Blanquet, J. 1964. Pflanzensoziologie. Gründzuge der Vegetationskunde. 3th ed. Springer, Wien.

    Book  Google Scholar 

  8. Burba, N., E. Feoli, M. Malaroda and V. Zuccarello. 1992. Un sistema informativo per la vegetazione. Software per l’archiviazione della vegetazione italiana e per l’elaborazione di tabelle. Manuale di utilizzo dei programmi. GEAD-EQ n.11. Università degli Studi di Trieste.

  9. Chiarucci, A., G. Bacaro, A. Vanini and D. Rocchini. 2008. Quantifying species richness at multiple spatial scales in a Natura 2000 network. Community Ecol. 9:185–192.

    Article  Google Scholar 

  10. Chiarucci, A., G. Bacaro, G. Filibeck, S. Landi, S. Maccherini and A. Scoppola 2012. Scale dependence of plant species richness in a network of protected areas. Biodivers. Conserv. 21:503–516.

    Article  Google Scholar 

  11. Dale, M.B. 1988. Knowing when to stop: cluster concept–concept cluster. Coenoses 1:11–31.

    Google Scholar 

  12. Dale, M.B. 1994. Do ecological communities exist? J. Veg. Sci. 5:285–286.

    Article  Google Scholar 

  13. Dale, M.B., E. Feoli and P. Ganis. 1989. Incorporation of information from the taxonomic hierarchy in comparing vegetation types. Taxon 38:216–227.

    Article  Google Scholar 

  14. Darwin, C. 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life (1st ed.). John Murray, London.

    Google Scholar 

  15. de Bello, F., J. Lepš, S. Lavorel and M. Moretti 2007. Importance of species abundance for assessment of trait composition: an example based on pollinator communities. Community Ecol. 8:163–170.

    Article  Google Scholar 

  16. De Cáceres, M., M. Chytrý, E. Agrillo, F. Attorre, Z. Botta-Dukát, J. Capelo, B. Czúcz, J. Dengler, J. Ewald, D. Faber-Langendoen, E. Feoli, S.B. Franklin, R. Gavilán, F. Gillet, F. Jansen, B. Jiménez-Alfaro, P. Krestov, F. Landucci, A. Lengyel, J. Loidi, L. Mucina, R.K. Peet, D.W. Roberts, J. Roleček, J.H.J. Schaminée, S. Schmidtlein, J.P. Theurillat, L. Tichý, D.A. Walker, O. Wildi, W. Willner and S.K. Wiser. 2015. A comparative framework for broad-scale plot-based vegetation classification. Appl. Veg. Sci. 18:543–560.

    Article  Google Scholar 

  17. Duarte, L.D.S., V.J. Debastiani, A.V. L. Freitas and V. Pillar. 2016. Dissecting phylogenetic fuzzy weighting: theory and application in metacommunity phylogenetic. Meth. Ecol. Evol. 7:937–946.

    Article  Google Scholar 

  18. Feoli, E. 1977. On the resolving power of principal component analysis in plant community ordination. Vegetatio 33:119–125.

    Google Scholar 

  19. Feoli, E. 1983. Predictive use of classification and ordination methods in plant community ecology. A summary with examples. In: C. Ferrari, S. Gentile, S. Pignatti and E. Poli Marchese, Le comunità vegetali come indicatori ambientali. Regione Emila Romagna (Assessorato Ambiente) e Società Italiana di Fitosociologia. pp. 83–108.

  20. Feoli, E. 1984a. Some aspects of classification and ordination of vegetation data in perspective. Studia Geobot. 4:7–21.

    Google Scholar 

  21. Feoli, E. 1984b. Is there any correlation between anatomical spaces of vegetation and its sampling space? Giorn. Bot. Ital. 118:98–100.

    Article  Google Scholar 

  22. Feoli, E. 2010. Heath species and heathlands of Italy: an analysis of their relationships under the perspective of climate change based on the description of habitats used for the project “Carta della Natura” (Italian Map of Nature). Ecol. Questions 12:161–170.

    Article  Google Scholar 

  23. Feoli, E. 2012. Diversity patterns of vegetation systems from the perspective of similarity theory. Plant Biosyst. 146:797–804.

    Article  Google Scholar 

  24. Feoli, E and P. Ganis. 1985. Comparison of floristic vegetation types by multiway contingency tables. Abstr. Bot. 9:1–15.

    Google Scholar 

  25. Feoli, E. and M. Lagonegro. 1982. Syntaxonomical analysis of beech woods in the Apennines (Italy) using the program package IAHOPA. Vegetatio 50:129–173.

    Article  Google Scholar 

  26. Feoli, E. and D. Lausi. 1980. Hierarchical levels in syntaxonomy based on information functions. Vegetatio 42:113–115.

    Article  Google Scholar 

  27. Feoli, E. and L. Orlóci. 1979. Analysis of concentration and detection of underlying factors in structured tables. Vegetatio 40:49–54.

    Google Scholar 

  28. Feoli, E. and L. Orlóci. 1991. The properties and interpretation of observations in vegetation study. In: E. Feoli, L. Orlóci (eds), Computer Assisted Vegetation Analysis. Kluwer, Boston. pp. 3–13.

    Chapter  Google Scholar 

  29. Feoli, E. and L. Orlóci. 2011. Can similarity theory contribute to the development of a general theory of the plant community? Community Ecol. 12:135–141.

    Article  Google Scholar 

  30. Feoli, E and M. Scimone. 1984a. Hierarchical diversity: an application to broad-leaved woods of the Apennines. Giorn. Bot. Ital. 118:1–15.

    Article  Google Scholar 

  31. Feoli, E. and M. Scimone. 1984b. A quantitative view of textural analysis of vegetation and examples of application of some methods. Arch. Bot. Biogeogr. Ital. 60:73–94.

    Google Scholar 

  32. Feoli, E and V. Zuccarello. 1986. Ordination based on classification: yet another solution?! Abstr. Bot. 10:203–219.

    Google Scholar 

  33. Feoli, E. and V. Zuccarello. 2013. Fuzzy sets and eigenanalysis in community study: classification and ordination are two faces of the same coin. Community Ecol. 14:164–171.

    Article  Google Scholar 

  34. Feoli, E., G. Ferro and P. Ganis. 2006. Validation of phytosociological classifications based on a fuzzy set approach. Community Ecol. 7:98–117.

    Article  Google Scholar 

  35. Feoli, E., P. Ganis and C. Ricotta. 2013. Measuring diversity of environmental systems. In: J.J. Ibanez and J. Bockeim (eds.), Pedodiversity. CRC Press Taylor and Francis. pp. 29–58.

  36. Feoli, E., P. Ganis and Zerihun Woldu. 1988. Community niche, an effective concept to measure diversity of gradients and hyperspaces. Coenoses 3:31–34.

    Google Scholar 

  37. Feoli, E., M. Lagonegro and L. Orlóci. 1984. Information Analysis of Vegetation Data. Dr. W. Junk Publishers, The Hague.

    Book  Google Scholar 

  38. Feoli, E, L. Gallizia Vuerich, P. Ganis and Zerihun Woldu. 2009. A classificatory approach integrating fuzzy set theory and permutation techniques for land cover analysis: a case study on a degrading area of the Rift Valley (Ethiopia). Community Ecol. 10:53–64.

    Google Scholar 

  39. Feoli, E., P. Ganis, G. Oriolo and A. Patrono. 1992. Modelli per il calcolo della diversità e loro applicabilità nella valutazione di impatto ambientale. S.IT.E. Atti 14:29–34.

    Google Scholar 

  40. Ferrari, C., S. Gentile, S. Pignatti and E. Poli Marchese (eds.). 1983. Le comunità vegetali come indicatori ambientali. Regione Emila Romagna (Assessorato Ambiente) e Società Italiana di Fitosociologia, Bologna.

  41. Gorelick, R. 2011. Commentary: Do we have a consistent terminology for species diversity? The fallacy of true diversity. Oecologia 167:885–888.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hill, M.O. 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432.

    Article  Google Scholar 

  43. Hui, C. 2008. On species-area and species accumulation curves: a comment on Chong and Stohlgren’s index. Ecol. Indic. 8:327–329.

    Article  Google Scholar 

  44. Hui, C. and M.A. McGeoch. 2008. Does the self-similar species distribution model lead to unrealistic predictions? Ecology 89:2946–2952.

    Article  Google Scholar 

  45. Hui, C. and M.A. McGeoch. 2014. Zeta diversity as a concept and metric that unifies incidence-based biodiversity patterns. Am. Nat. 184:684–694.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hurlbert, S.H. 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586.

    Article  Google Scholar 

  47. Jost, L. 2007. Partitioning diversity into independent alpha and beta components. Ecology 88:2427–2439.

    Article  Google Scholar 

  48. Jost, L. 2010. The relation between evenness and diversity. Diversity 2:207–232.

    Article  Google Scholar 

  49. Juhász-Nagy, P. 1993. Notes on compositional diversity. Hydrobiologia 249:173–182.

    Article  Google Scholar 

  50. Jurasinski, G. and M. Koch. 2011. Commentary: do we have a consistent terminology for species diversity? We are on the way. Oecologia 167:893–902.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Keddy, P. 1993. Do ecological communities exist? A reply to Bastow Wilson. J. Veg. Sci. 4:135–136.

    Article  Google Scholar 

  52. Kizekova, M., E. Feoli, G. Parente and R. Kanianska. 2017. Analysis of the effects of mineral fertilization on species diversity and yield of permanent grasslands: revisited data to mediate economic and environmental needs. Community Ecol. 18:295–304.

    Article  Google Scholar 

  53. Kraft, N.J.B and D.D. Ackerly. 2014. Assembly of plant communities. In: R.K. Monson (ed.), Ecology and the Environment, The Plant Sciences 8. Springer, New York.

    Google Scholar 

  54. Leinster, T. and C.A. Cobbold. 2012. Measuring diversity: the importance of species similarity. Ecology 93:477–489.

    Article  Google Scholar 

  55. Levin, S.A. 1983a. Coevolution. In: H.I. Freedman and C. Strobeck (eds.), Population Biology. Lecture notes in Biomathematics 52:328–334.

  56. Levin, S.A. 1983b. Some approaches to the modelling of coevolutionary interactions. In: M. Nitecki (ed.), Coevolution. University of Chicago Press. pp. 21–65.

  57. MacArthur, R. and R. Levins. 1967. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101(921): 377–385.

    Article  Google Scholar 

  58. Magurran, A.E. 1988. Ecological Diversity and its Measurement. Croom Helm, London/Sydney.

    Book  Google Scholar 

  59. Magurran, A.E. 2004. Measuring Biological Diversity. Blackwell, Oxford.

    Google Scholar 

  60. Maignan, C., G. Ottaviano, Pinelli, D., Rullani, F. 2003. Bioecological diversity vs. socio-economic diversity: A comparison of existing measures. Working Papers Fondazione Eni Enrico Mattei. 13.

  61. Margalef, R. 1958. Information theory in ecology. Gen. Syst. 3:36–71.

    Google Scholar 

  62. Mason, N.V.H., D. Mouillot, W.G. Lee and J.B. Wilson. 2005. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111:112–118.

    Article  Google Scholar 

  63. Mazzoleni, S., G. Bonanomi, F. Giannino, G. Incerti, S.C. Dekker and M. Rietkerk. 2010. Modelling the effects of litter decomposition on tree diversity patterns. Ecol Model. 221:2784–92.

    Article  Google Scholar 

  64. Mazzoleni, S., G. Bonanomi, F. Giannino, M.G. Rietkerk, S.C. Dekker and F. Zucconi. 2007. Is plant biodiversity driven by decomposition processes? An emerging new theory on plant diversity. Community Ecol. 8:103–109.

    Article  Google Scholar 

  65. Mazzoleni, S., F. Carteni, G. Bonanomi, M. Senatore, P. Termolino, F. Giannino, G. Incerti, M. Rietkerk, V. Lanzotti and M.L. Chiusano. 2015. Inhibitory effects of extracellular self-DNA: a general biological process? New Phytol. 206:127–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. McCann, K.S. 2000. The diversity-stability debate. Nature 405:228–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Moreno, C.E. and P. Rodríguez. 2011. Commentary: Do we have a consistent terminology for species diversity? Back to basics and toward a unifying framework. Oecologia 167:889–892.

    Google Scholar 

  68. Mueller-Dombois, D. and H. Ellenberg. 1974. Aims and Methods of Vegetation Ecology. John Wiley & Sons, New York.

    Google Scholar 

  69. Newman, E.I. (ed.) 1982. The Plant Community as a Working Mechanism. Blackwell Scientific Publications, Oxford.

  70. Orlóci, L. 1972. On objective functions of phytosociological resemblance. Am. Midl. Nat. 88:28–55.

    Article  Google Scholar 

  71. Orlóci, L. 1978. Multivariate Analysis in Vegetation Research. 2nd ed. Dr. Junk, The Hague.

    Google Scholar 

  72. Orlóci, L. 2013. Quantum Analysis of Primary Succession. The Energy Structure of a Vegetation Chronosere in Hawai’i Volcanoes National Park. SCADA Publishing, Canada. Online Edition: http://createspace.com/4452597

  73. Orlóci, L. 2014. Quantum Ecology. Energy Structure and its Analysis. SCADA Publishing, Canada. Online Edition: http://createspace.com/4406077

  74. Orlóci, L. 2015a. Diversity Analysis, Holistic Energetics, and Statistics. The Resonator Complex Model of the Vegetation Stand. SCADA Publishing, Canada. Online Edition: http://createspace.com/5783923

  75. Orlóci, L. 2015b. Energy-based Vegetation Mapping. A Case Study in Statistical Quantum Ecology. SCADA Publishing, Canada. Online Edition: http://createspace.com/5495773.

  76. Orlóci, L. and M. Orlóci. 1985. Comparison of communities without the use of species: model and examples. Ann. Bot. 43:275–285.

    Google Scholar 

  77. Orlóci, L., E. Feoli, D. Lausi and P.L. Nimis. 1986. Estimation of character structure convergence (divergence) in plant communities: a nested hierarchical model. Coenoses 1:11–20.

    Google Scholar 

  78. Palmer, M.W. and P.S. White. 1994. On the existence of ecological communities. J. Veg. Sci. 5: 279–282.

    Article  Google Scholar 

  79. Patil, G.P. and C. Taillie. 1976. Ecological diversity: concepts, indices and applications. In: Proceedings of the 9th Int. Biometric conference. The Biometric Society. 2:383–411.

  80. Pavoine, S. 2016. A guide through a family of phylogenetic dissimilarity measures among sites. Oikos 125:1719–1732.

    Article  Google Scholar 

  81. Pavoine, S., M.S. Love and M.B. Bonsall. 2009. Hierarchical partitioning of evolutionary and ecological patterns in the organization of phylogenetically-structured species assemblages: application to rockfish (genus: Sebastes) in the Southern California Bight. Ecol. Lett. 12:898–908.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Pavoine, S., E. Marcon and C. Ricotta. 2016. ‘Equivalent numbers’ for species, phylogenetic or functional diversity in a nested hierarchy of multiple scales. Meth. Ecol. Evol. 7:1152–1163.

    Article  Google Scholar 

  83. Pavoine, S., S. Ollier and D. Pontier. 2005. Measuring diversity from dissimilarities with Rao’s quadratic entropy: Are any dissimilarities suitable? Theor. Popul. Biol. 67:231–239.

    Article  CAS  Google Scholar 

  84. Pesarin, F. 2001. Multivariate Permutation Tests. With Applications in Biostatistics. John Wiley & Sons, Chichester, Toronto.

    Google Scholar 

  85. Pielou, E.C. 1975. Ecological Diversity. Wiley, New York.

    Google Scholar 

  86. Pillar, V. 1999. How sharp are classifications? Ecology 80:2508–2516.

    Article  Google Scholar 

  87. Pillar, V. and L. Orlóci 1993. Character-Based Community Analysis: The Theory and an Application Program. SPB Academic Publishing bv, The Hague, The Netherlands.

    Google Scholar 

  88. Pillar, V. and L. Orlóci. 1996. On randomization testing in vegetation science: Multifactor comparisons of relevé groups. J. Veg. Sci. 7:585–592.

    Article  Google Scholar 

  89. Pillar, V. and L. Orlóci. 2004. Character-based community analysis: The theory and an application program. Available: http://ecoqua.ecologia.ufrgs.br

  90. Pillar, V., L.D.S. Duarte, E.E. Sosinski and F. Joner. 2009. Discriminating trait-convergence and trait-divergence assembly patterns in ecological community gradients. J. Veg. Sci. 20:334–348.

    Article  Google Scholar 

  91. Podani, J. 2000. Introduction to the Exploration of Multivariate Biological Data. Backhuys Publishers, Leiden.

    Google Scholar 

  92. Podani, J. 2006. With a machete through the jungle: some thoughts on community diversity. Acta Biotheor. 54: 125–131.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Podani, J. 2007. Analisi ed esplorazione multivariate dei dati in Ecologia e Biologia. Liguori editore, Napoli.

    Google Scholar 

  94. Podani, J. and D. Schmera. 2011. A new conceptual and methodological framework for exploring and explaining pattern in presenceabsence data. Oikos 120:1625–1638.

    Article  Google Scholar 

  95. Rao, C.R. 1982. Diversity and dissimilarity measurements: a unified approach. Theor. Popul. Biol. 21:24–43.

    Article  Google Scholar 

  96. Rao, C.R. 2010. Quadratic entropy and analysis of diversity. Sankhyā: Ind. J. Stat. 72-A(1):70–80.

    Article  Google Scholar 

  97. Rényi, A. 1961. On measure of entropy and information. In: J. Neyman (ed.), The Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability. Univ. Calif. Press, Berkeley, CA. pp. 547–561.

    Google Scholar 

  98. Ricotta, C. 2003. On parametric evenness measures. J. Theor. Biol. 222:189–197.

    Article  Google Scholar 

  99. Ricotta, C. 2004. A recipe for unconventional evenness measures. Acta Biotheor. 52:95–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ricotta, C. 2017. Of beta diversity, variance, evenness, and dissimilarity. Ecol. Evol. 7:4835–4843.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ricotta, C. and M. Anand. 2006. Spatial complexity of ecological communities: Bridging the gap between probabilistic and nonprobabilistic uncertainty measures. Ecol. Model. 197:59–66.

    Article  Google Scholar 

  102. Ricotta, C. and M. Marignani. 2007. Computing β-diversity with Rao’s quadratic entropy: A change of perspective. Divers. Distrib.13:237–241.

    Google Scholar 

  103. Ricotta, C. and S. Pavoine. 2015. A multiple-site dissimilarity measure for species presence/absence data and its relationship with nestedness and turnover. Ecol. Indic. 54:203–206.

    Article  Google Scholar 

  104. Ricotta, C. and L. Szeidl. 2006. Towards a unifying approach to diversity measures: bridging the gap between Shannon entropy and Rao’s quadratic index. Theor. Popul. Biol. 70:237–243.

    Article  Google Scholar 

  105. Ricotta, C. and L. Szeidl. 2009. Diversity partitioning of Rao’s quadratic entropy. Theor. Popul. Biol. 76:299–302.

    Article  Google Scholar 

  106. Ricotta, C,E. De Zuliani, A. Pacini and G.C. Avena. 2001. On the mutual relatedness of evenness measures. Community Ecol. 2:51–56.

    Article  Google Scholar 

  107. Ricotta, C., G. Bacaro, M. Caccianiga, B.E.L. Cerabolini and M. Moretti. 2015. A classical measure of phylogenetic dissimilarity and its relationship with beta diversity. Basic Appl. Ecol. 16:10–18.

    Article  Google Scholar 

  108. Ricotta, C., G. Bacaro, M. Caccianiga, B.E.L. Cerabolini and S. Pavoine. 2018. A new method for quantifying the phylogenetic redundancy of biological communities. Oecologia 186:339–346.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ricotta, C., E. Ari, G. Bonanomi, F. Giannino, D. Heathfield, S. Mazzoleni and J. Podani. 2017. Spatial analysis of phylogenetic community structure: New version of a classical method. Community Ecol. 18:37–46.

    Article  Google Scholar 

  110. Roberts, D.W. 1986. Ordination on the basis of fuzzy set theory. Vegetatio 66:123–131.

    Article  Google Scholar 

  111. Schmera, D. and J. Podani. 2018. Through the jungle of methods quantifying multiple-site resemblance. Ecol. Inform. 44:1–6.

    Article  Google Scholar 

  112. Tichý, L. 2002. JUICE, software for vegetation classification. J. Veg. Sci. 13:451–453.

    Article  Google Scholar 

  113. Tichý, L. and J. Holt. 2006. JUICE, program for management, analysis and classification of ecological data. Masaryk University, Brno, CZ.

    Google Scholar 

  114. Tichý, L, M. Chytrý, M. Hájek, S.S. Talbot and Z. Botta-Dukát. 2010. OptimClass: using species-to-cluster fidelity to determine the optimal partition in classification of ecological communities. J. Veg. Sci. 21:287–299.

    Article  Google Scholar 

  115. Tilman, D., F. Isbell, and J. Cowles. 2014. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45:471–493.

    Article  Google Scholar 

  116. Tuomisto, H. 2010a. A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33:2–22.

    Article  Google Scholar 

  117. Tuomisto, H. 2010b. A consistent terminology for quantifying species diversity? Yes, it does exist. Oecologia 4:853–860.

    Article  Google Scholar 

  118. Tuomisto, H. 2011. Commentary: do we have a consistent terminology for species diversity? Yes, if we choose to use it. Oecologia 167:903–911.

    Article  Google Scholar 

  119. van der Maarel, E. 1975. The Braun-Blanquet approach in perspective. Vegetatio 30:213–219.

    Article  Google Scholar 

  120. van der Maarel, E. 1996. Pattern and process in plant community. Fifty years after A.S. Watt. J. Veg. Sci. 7:19–28.

    Google Scholar 

  121. van der Maarel, E. 2005. Vegetation ecology – an overview. In: E. van der Maarel (ed.) Vegetation Ecology. Blackwell, UK. pp. 1–51.

    Google Scholar 

  122. Von Bertalanffy, L. 1968. General System Theory. George Braziller, New York.

    Google Scholar 

  123. Watt, A.S. 1947. Pattern and process in the plant community. J. Ecol. 35:1–22.

    Article  Google Scholar 

  124. Whittaker, R.H. 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 30:279–338.

    Article  Google Scholar 

  125. Whittaker, R.H. 1972. Evolution and measurement of species diversity. Taxon 21:213–251.

    Article  Google Scholar 

  126. Wildi, O. 2017. Data Analysis in Vegetation Ecology. 3rd ed. CABI, Wallingford, UK.

    Book  Google Scholar 

  127. Wilkinson, J.H. 1965. The Algebraic Eigenvalue Problem. Oxford University Press, London.

    Google Scholar 

  128. Wilson, J.B. 1991. Does vegetation science exist? J. Veg. Sci. 2:289–290.

    Article  Google Scholar 

  129. Wilson, J.B. 1994. Who makes the assembly rules? J. Veg. Sci. 5:275–278.

    Article  Google Scholar 

  130. Wilson, J.B. 2011. The twelve theories of co-existence in plant communities: the doubtful, the important and the unexplored. J. Veg. Sci. 22:184–195.

    Article  Google Scholar 

  131. Wilson, J.B. 2012. Species presence/absence sometimes represents a plant community as well as species abundances do, or better. J. Veg. Sci. 23:1013–1023.

    Article  Google Scholar 

  132. Wilson, J.B. and A. Chiarucci. 2000. Do plant communities exist? Evidence from scaling up local species-area relations to the regional level. J. Veg. Sci. 11(5):773–775.

    Article  Google Scholar 

  133. Wilson, J.B., R.K. Peet and M.T. Sykes. 1995. What constitutes evidence of community structure? A reply to van der Maarel, Noest and Palmer. J. Veg. Sci. 6:753–758.

    Article  Google Scholar 

  134. Zadeh, L.A. 1965. Fuzzy sets. Inform. Control 8:338–353.

    Article  Google Scholar 

  135. Zadeh, L.A. 1978. Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and systems 1:3–28.

    Article  Google Scholar 

  136. Zhao, S.X. 1986. Discussion on fuzzy clustering. In: 8th Int. Conference on Pattern recognition. IEEE Press, New York. pp. 612–614.

    Google Scholar 

  137. Zimmerman, H. 1996. Fuzzy Set Theory and its Applications. 3rd ed. Kluwer, Dordrecht.

    Book  Google Scholar 

Download references

Acknowledgements

I thank P. Ganis, J. Podani, L. Orlóci, C. Ricotta and O. Wildi for having read the paper and for their comments. However, only I am responsible for possible errors. Many thanks are also addressed to the organizers of the 1st International Conference on Community Ecology (Sept 28–29, 2017, Budapest) for financial support offered to me to participate to the conference to present this paper.

Author information

Affiliations

Authors

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feoli, E. Classification of plant communities and fuzzy diversity of vegetation systems. COMMUNITY ECOLOGY 19, 186–198 (2018). https://doi.org/10.1556/168.2018.19.2.11

Download citation

Keywords

  • Eigenanalysis
  • Evenness
  • Fuzzy systems
  • Hierarchy
  • Pattern
  • Similarity theory