Community Ecology

, Volume 19, Issue 1, pp 84–92 | Cite as

Temporal patterns in the activity density and sex ratio of isopods (Oniscidea, Isopoda) along an urbanization gradient in Denmark

  • F. Vilisics
  • Z. Elek
  • G. L. LöveiEmail author


Urbanization effects on terrestrial isopod (Isopoda, Oniscidea) populations were studied in forested areas along a rural-to-urban gradient including a native beech forest, suburban and urban forest fragments in Sorø, Denmark. The seasonal activity patterns of the dominating species (Oniscus asellus, Philoscia muscorum and Porcellio scaber) indicated differences among the areas, but these patterns were idiosyncratic. There were more females than males in most areas. The seasonal patterns of males and non-gravid females were similar and often bimodal; gravid females showed markedly different, usually unimodal activity patterns. Temporal changes of sex ratios were — in each species — characterized by an early summer activity peak of males, followed by the activity peak of gravid females. We suggest that these trends might indicate a reproduction-driven surface activity of males. The small response of the three isopod species to urbanization may reflect their wide ecological tolerance as well as the “soft management” of the urban park.


Activity patterns Female-dominated sex ratio Seasonal activity Urbanization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank the support of the Sorø Akademi Stilftelse, the former Danish Institute for Agricultural Sciences, Flakkebjerg Research Center, the International School of Biodiversity Studies (ISOBIS) Aarhus, Denmark and the Hungarian Scholarship Board (ZE), Dr. H. Schmalfuss (Natural History Museum, Stuttgart) for taxonomic help, and Dr. E. Hornung (Szent István University, Budapest) for comments. This is publication no. 14 of the Danglobe Project. Author contributions: GL and ZE designed the study, and performed field sampling; ZE and FV sorted and identified the material, FV, ZE and GL made the analysis and wrote the paper.


  1. Achouri, M.S., F. Charfi-Cheikhrouha and M. Zimmer. 2008. Reproductive patterns in syntopic terrestrial isopod species (Crustacea, Isopoda, Oniscidea) from Morocco, Pedobiologia 52:127–137.CrossRefGoogle Scholar
  2. Andreev, V. 2004. Urban Climate and Air Quality – a Review. in: L. Penev et al. (eds.), Ecology of the City of Sofia. Species and Communities in an Urban Environment. Pensoft Publishers, Sofia – Moscow, pp. 55–82.Google Scholar
  3. Anichtchenko A. et al. 2012. Carabidae of the World.; accessed: 13 July 2017
  4. Araujo, P.B. and G. Bond-Buckup. 2005. Population structure and reproductive biology of Atlantoscia floridana (van Name, 1940) (Crustacea, Isopoda, Oniscidea) in southern Brazil. Acta Oecol. 28:289–298.CrossRefGoogle Scholar
  5. Arrontes, J. 1992. Sex-ratio variation in an intertidal isopod. Oikos 63:131–138.CrossRefGoogle Scholar
  6. Bogyó, D. and Z. Korsós. 2009. Effect of urbanization on diplopods – Faunistical results. Természetvédelmi Közlemények 15:412–421. (in Hungarian)Google Scholar
  7. Bouchon, D., T. Rigaud and P. Juchault. 1998. Evidence for widespread Wolbachia infection in isopod crustaceans: molecular identification and host feminization. Proc. Biol. Sci. 265:1081–1090.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cochard, P.O., F. Vilisics and E. Séchet. 2010. Alien terrestrial crustaceans (Isopods and Amphipods). In: A. Roques, J.Y. Rasplus, W. Rabistch, C. Lopez-Vaamonde, M. Kenis, W. Nentwig and D. Roy (eds.), Terrestrial Arthropod Invasions in Europe. BioRisk 4:81–96.Google Scholar
  9. Coleman, D.C. and P.F. Hendrix. 2000. Invertebrates as Webmasters in Ecosystems. CABI Publishing, Wallingford, UK.CrossRefGoogle Scholar
  10. Cordaux, R., A. Michel-Salzat and D. Bouchon, 2001. Wolbachia infection in crustaceans: novel hosts and potential routes for horizontal transmission. J. Evol. Biol. 14:237–243.CrossRefGoogle Scholar
  11. Devictor, V., R. Julliard, D. Couvet, A. Lee and F. Jiguet. 2007. Functional homogenization effect of urbanization on bird communities. Conserv. Biol. 21:741–751.CrossRefGoogle Scholar
  12. Dias, N. and M. Sprung. 2003. Population dynamics and production of the isopod Tylos ponticus in a Ria Formosa saltmarsh (South Portugal). In: A. Sfenthourakis, P.B. Araujo, E. Hornung, H. Schmalfuss, S. Taiti and K. Szlávecz (eds.), The Biology of Terrestrial Isopods V. (Crustaceana Monographs, 2), Brill Academic Publisher, Leiden, pp. 133–149.Google Scholar
  13. Elek, Z. and G.L. Lövei. 2005. Ground beetle (Coleoptera, Carabidae) assemblages along an urbanization gradient near Sorø, Zealand, Denmark. Entomol. Med. 73:115–121.Google Scholar
  14. Elek, Z., G.L. Lövei. 2007. Patterns in ground beetle (Coleoptera: Carabidae) assemblages along an urbanization gradient in Denmark. Acta Oecol. 32:104–111.CrossRefGoogle Scholar
  15. Farkas, S. 1998. Population dynamics, spatial distribution, and sex ratio of Trachelipus rathkei (Brandt, 1833) (Isopoda: Oniscidea) in a wetland forest by the Drava River. Isr. J. Zool. 44:323–332.Google Scholar
  16. Fazekas, J., F. Kádár, M. Sárospataki and G.L. Lövei, 1997. Seasonal activity, age structure and egg production of the ground beetle Anisodactylus signatus (Coleoptera: Carabidae) in Hungary. Eur. J. Entomol. 94:473–484.Google Scholar
  17. Fisher, R.A. 1930. The Genetical Theory of Natural Selection. Clarendon Press, Oxford, UKCrossRefGoogle Scholar
  18. Grimm, N.B., S.H. Faeth, N.E. Golubiewski, C.L. Redman, J. Wu, X. Bai and J.M. Briggs. 2008. Global change and the ecology of cities, Science 319:756–760.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Godfray, H.C.J. and J.H Werren. 1996. Recent developments in sex ratio studies. Trends. Ecol. Evol. 11:59–63.CrossRefGoogle Scholar
  20. Gonçalves, S.C., M.A. Pardal, P.G. Cardoso, S.M. Ferreira and J.C. Marques. 2005. Biology, population dynamics and secondary production of Tylos europaeus (Isopoda, Tylidae) on the western coast of Portugal. Marine Biol. 147:631–641.CrossRefGoogle Scholar
  21. Holway, D.A. and A.V. Suarez. 2006. Homogenization of ant communities in mediterranean California: the effects of urbanization and invasion. Biol. Conserv. 127:319–326.CrossRefGoogle Scholar
  22. Hornung, E. and M.R. Warburg. 1998. Plasticity of a Porcellio ficulneus population under extrem weather conditions (a case study). Isr. J. Zool. 44:395–398.Google Scholar
  23. Hornung, E., B. Tóthmérész, T. Magura and F. Vilisics. 2007. Changes of isopod assemblages along an urban — suburban — rural gradient in Hungary. Eur. J. Soil Biol. 44:158–165.CrossRefGoogle Scholar
  24. Horváth, R., Z. Elek and G.L.Lövei. 2014. Compositional changes in spider (Araneae) assemblages along an urbanisation gradient near a Danish town. Bull. Insectology 67:255–264.Google Scholar
  25. Magura,T., G.L. Lövei and B. Tóthmérész. 2010. Does urbanization decrease diversity in ground beetle (Carabidae) assemblages? Global Ecol. Biogeogr. 19:16–26.CrossRefGoogle Scholar
  26. Meinertz, T. 1964.The distribution of the terrestrial isopods in Denmark up to 1963. Vidensk. Medd. Dan. Naturhist. Foren. 126:465–496.Google Scholar
  27. McIntyre, N.E., J. Rango, W.F. Fagan and S.H. Faeth. 2001. Ground arthropod community structure in a heterogeneous urban environment. Landscape Urb. Plan. 52:257–274.CrossRefGoogle Scholar
  28. Nair, G.A. 1998. Reproductive and population biology of Porcellio scaber (Isopoda, Oniscidea) in Benghazi, Libya. Isr. J. Zool. 44:399–412.Google Scholar
  29. Niemelä, J., J. Kotze, A. Ashworth, P. Brandmayr, K. Desender, T. New, L. Penev, M. Samways and J. Spence. 2000. The search for common anthropogenic impacts on biodiversity: a global network. J. Ins.Conserv. 4:3–9.CrossRefGoogle Scholar
  30. Niemelä, J., J.H. Breuste, G. Guntenspergen, N.E. McIntyre, T. Elmqvist and P. James, 2011. Urban Ecology — Patterns, Processes, and Applications. Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
  31. O’Neill, S.L., A.A. Hoffmann and J.H. Werren, 1997. Influential Passengers: Inherited Microorganisms and Invertebrate Reproduction. Oxford University Press, Oxford, UKGoogle Scholar
  32. Paoletti, M.G. and C.M. Cantarino. 2002. Sex ratio alterations in terrestrial woodlice populations (Isopoda: Oniscidea) from agroecosystems subjected to different agricultural practices in Italy. Appl. Soil. Ecol. 19:113–120.CrossRefGoogle Scholar
  33. Pavao-Zuckerman, M.A. and D.C. Coleman. 2007. Urbanization alters the functional composition, but not taxonomic diversity, of the soil nematode community. App. Soil Ecol. 35:329–339.CrossRefGoogle Scholar
  34. Rigaud, T., D. Antoine, I. Marcede and P. Juchault. 1997. The effect of temperature on sex ratio in the isopod Porcellionides pruinosus: Environmental sex determination or a by-product of cytoplasmic sex determination? Evol. Ecol. 11:205–215.CrossRefGoogle Scholar
  35. Roques, A., W. Rabitsch, J.Y. Rasplus, C. Lopez-Vaamonde, W. Nentwig and M. Kenis. 2009. Alien Terrestrial Invertebrates of Europe. Handbook of Alien Species in Europe. Invading Nature — Springer Series in Invasion Ecology 3, pp. 63–79.Google Scholar
  36. Sapia, M., G.L. Lövei and Z. Elek. 2006. Effects of varying sampling effort on the observed diversity of carabids (Coleoptera: Carabidae). Ent. Fenn. 17:345–350.Google Scholar
  37. Sattler, T., P. Duelli, M.K. Obrist, R. Arlettaz and M. Moretti. 2010. Response of arthropod species richness and functional groups to urban habitat structure and management. Landscape Ecol. 25:941–954.CrossRefGoogle Scholar
  38. Scharff, N. and O. Gudik-Sørensen, 2006. Catalogue of the Spiders of Denmark (Araneae), Entomol. Medd. 74:3–71.Google Scholar
  39. Schmalfuss, H. 2003. World catalog of terrestrial isopods (Isopoda: Oniscidea). Stuttg. Beitr. Naturk., Ser. A 654:1–341.Google Scholar
  40. Schowalter, T.D. 2012. Insect responses to major landscape-level disturbance. Annu. Rev. Entomol. 57:1–20.CrossRefGoogle Scholar
  41. Sutton, S.L. 1980. Woodlice. Pergamon Press, Oxford, UK.Google Scholar
  42. Sunderland, K.D., M. Hassall and S.L. Sutton. 1976. The population dynamics of Philoscia muscorum (Crustacea, Oniscoidea) in a dune grassland ecosystem. J. Anim. Ecol. 45:487–506.CrossRefGoogle Scholar
  43. Tian, G., L. Brussard and B.T. Tang. 1995., Breakdown of plant residues with contrasting chemical composition under humid tropical conditions: effects of earthworms and millipedes. Soil Biol. Biochem. 27:277–280.CrossRefGoogle Scholar
  44. Tuf, I.H. 2003. Development of the community structure of terrestrial isopods (Crustacea, Isopoda, Oniscidea) after a summer flood. In: A. Sfenthourakis, P.B. Araujo, E. Hornung, H. Schmalfuss, S. Taiti and K. Szlávecz (eds.), The Biology of Terrestrial Isopods V. (Crustaceana Monographs, 2), Brill Academic Publisher, Leiden, pp. 231–242.Google Scholar
  45. Vilisics, F., Z. Elek., G.L. Lövei and E. Hornung. 2007. Composition of terrestrial isopod assemblages under different urbanization stages in Denmark. Pedobiologia 51:45–53.CrossRefGoogle Scholar
  46. Vilisics, F. and E. Hornung. 2009. Urban areas as introduction hot-spots and shelters for native isopod species. Urban Ecosyst. 12:333–345.CrossRefGoogle Scholar
  47. Vilisics, F., D. Bogyó, T. Sattler and M. Moretti. 2012. Occurrence and assemblage composition of millipedes (Myriapoda, Diplopoda) and terrestrial isopods (Crustacea, Isopoda, Oniscidea) in urban areas of Switzerland. ZooKeys 176:199–214.CrossRefGoogle Scholar
  48. Wijnhoven, H. 2000. Landpissebedden van de Ooijpolder: deel 1. verspreiding (Crustacea: Isopoda: Oniscidea). Nederl. Faunist. Med. 11:55–131.Google Scholar
  49. Zapparoli, M. 1997. Urban development and insect biodiversity of the Rome area, Italy. Landscape Urban Plan. 38:77–86.CrossRefGoogle Scholar
  50. Zimmer, M. and G. Kautz. 1997. Breeding phonological strategies of the common woodlouse, Porcellio scaber (Isopoda: Oniscidea). Eur. J. Soil Biol. 33:67–73.Google Scholar
  51. Zimmer, M. and W. Topp. 1999. Relationships between woodlice (Isopoda: Oniscidea)and microbial density and activity in the field. Biol. Fert. Soils 30:117–123.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2018

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.University of Helsinki, Faculty of Bio- and Environmental Sciences, Department of Environmental Sciences, Urban Ecology Research GroupHelsinki, Viikinkaari 2Finland
  2. 2.MTA-ELTE-MTM, Ecology Research GroupBiological InstituteBudapestHungary
  3. 3.Department of AgroecologyAarhus University, Flakkebjerg Research CentreSlagelseDenmark

Personalised recommendations