Community Ecology

, Volume 18, Issue 3, pp 295–304 | Cite as

Analysis of the effects of mineral fertilization on species diversity and yield of permanent grasslands: revisited data to mediate economic and environmental needs

  • M. Kizekova
  • E. FeoliEmail author
  • G. Parente
  • R. Kanianska


The 2013 reform of the European Common Agricultural Policy tries to support farmers willing to follow environment- friendly rural practices, by the so called “green payment”. Within this framework, it is suggested that governments and regions should maintain a certain ratio of the area of permanent grasslands to the total Utilized Agricultural Area according to the greening rules of the reform. However, the weak economic performance of permanent grasslands does not encourage farmers to invest into their conservation. This fact persuaded us to revisit our old unpublished data, obtained by experiments on the use of chemical fertilizers in permanent grasslands. By this reanalysis we hope to further support the new European policy with the perspective to find a trade-off between the conservation of the biodiversity and the economic productivity of permanent grasslands. Of the many possibilities we have chosen to present the results of two experiments, one in Italy and the other in Slovakia. The main reason for this choice was that these two studies followed complementary strategies of fertilization that appeared useful to detect both the single and the synergistic effects of N, P, and K on the relationships between yield and species diversity. The results of cluster and diversity analysis suggest that chemical fertilization should be carefully planned according to soil conditions, since different treatments may have the same effect on the floristic and vegetation patterns of grasslands. These results, according to similarity theory, allow to choose the least expensive and polluting combination of N, P and K from those that, according to the species combinations, are assigned to the same cluster.


Cluster analysis Similarity theory Sustainable development Trade-off 



Common Agricultural Policy




Nitrogen; Phosphorus and Potassium




Utilized Agricultural Area


Vegetation Units


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We want to thank Dr. P. Nassimbeni and doc. Ing. O. Tomka, CSc. Past Directors of the Italian and Slovak research Institutes for having made possible the set-up of the Italian and Slovak experiments. Sincere thanks to an anonymous referee, J. Podani and prof. L. Poldini for reading and commenting the text.

Supplementary material

42974_2017_18030295_MOESM1_ESM.pdf (33 kb)
Analysis of the effects of mineral fertilization on species diversity and yield of permanent grasslands: revisited data to mediate economic and environmental needs


  1. Baselga, A. 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecol. Biogeogr. 19:134–143.CrossRefGoogle Scholar
  2. Bassignana, M., F. Bozzo, F. Gusmeroli, F. Kasal, A. Ligabue, M. Orlandi, D. and G. Parente. 2002. Specific biodiversity in alpine meadows at different degree of utilisation. Grassl. Sci. Eur. 7:1010–1011.Google Scholar
  3. Black, C.A. (ed.) 1965. Methods of Soil Analysis. American Society of Agronomy, Madison, WI, USA.Google Scholar
  4. Dickson, T.L. and B.L. Foster. 2011. Fertilization decreases plant biodiversity even when light is not limiting. Ecol. Lett. 14:380388.CrossRefGoogle Scholar
  5. Chytrý, M. and D. Blažková. 2007. TD Molinio-Arrhenatheretea Tüxen 1937. In: Chytrý M. (ed.), Vegetace České republiky. 1. Travinná a keříčková vegetace [Vegetation of the Czech Republic. 1. Grassland and Heathland Vegetation]. Academia, Praha. pp. 166168.Google Scholar
  6. Daily, G.C. 1997. Nature’s Services: Societal Dependence on Natural Ecosystems. Island Press, Washington.Google Scholar
  7. Dengler J., M. Janišová, P. Török and C. Wellstein. 2014. Biodiversity of Palaearctic grasslands: a synthesis. Agric. Ecosyst. Environ. 182:1–14.CrossRefGoogle Scholar
  8. Egner, H., H. Riehm and W.R. Domingo. 1960. Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nahrstoff-zustandes der Boden. II. K. Lantbrhogsk. Annlr. 20:199216.Google Scholar
  9. Feoli, E. 2010. Heath species and heathlands of Italy: an analysis of their relationships under the perspective of climate change based on the description of habitats used for the project “Carta della Natura” (Italian Map of Nature). Ecol. Quest. 12:161170.Google Scholar
  10. Feoli, E., L. Gallizia Vuerich, P. Ganis and Z. Woldu. 2009. A classificatory approach integrating fuzzy set theory and permutation techniques for land cover analysis: a case study on a degrading area of the Rift Valley (Ethiopia). Community Ecol. 10:5364.CrossRefGoogle Scholar
  11. Feoli, E. and L. Orlóci. 2011. Can similarity theory contribute to the development of a general theory of the plant community? Community Ecol. 12:135141.CrossRefGoogle Scholar
  12. Gáborčík, N. and A. Javorková. 1980. Dynamika narastania pratocenóz vrátane základných produkčných procesov. [Growth dynamics of pratocenoses, including basic production processes]. Final report. Grassland Research Institute, Banská Bystrica, Slovakia.Google Scholar
  13. Gaujour, E., B. Amiaud, C. Mignolet and S. Plantureux. 2012. Factors and processes affecting plant biodiversity in permanent grasslands. A review. Agron. Sustain. Dev. 32:113160.CrossRefGoogle Scholar
  14. Grootjans, A, L. Fresco, C.C. de Leeuw and P. Schipper. 1996. Degeneration of species-rich Calthion palustris hay meadows: some considerations on the community concept. J. Veg. Sci. 7:185194.CrossRefGoogle Scholar
  15. Habel, J.C., J. Dengler, M. Janišová, P. Török, C. Wellstein and M. Wiezik. 2013. European grassland ecosystems: Threatened hot-spots of biodiversity. Biodivers. Conserv. 22:2131–2138.CrossRefGoogle Scholar
  16. Härdtle, W., B. Redecker, T. Assmann and H. Meyer. 2006. Vegetation responses to environmental conditions in floodplain grasslands. Prerequisites for preserving plant species diversity. Basic Appl. Ecol. 7:280–288.Google Scholar
  17. Hill, M.O. 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432.CrossRefGoogle Scholar
  18. Hobbs, R.J. and L.F. Huenneke. 1992. Disturbance, diversity and invasive: Implication for conservation. Conserv. Biol. 6:324–337.CrossRefGoogle Scholar
  19. Huyghe C., A. De Vliegher, B. van Gils and A. Peeters. 2014. Grasslands and Herbivore Production in Europe and Effects of Common Policies. Quae editions, Versailles.CrossRefGoogle Scholar
  20. Jackson, M.L. 1958. Soil Chemical Analysis. Prentice Hall, Inc., Englewood Cliffs, NJ, USA.Google Scholar
  21. Jean-Vasile, A., A. Turek Rahoveanu, J. Subic and D. Dusmanescu. (eds.) 2013. Sustainable Technologies, Policies, and Constraints in the Green Economy. IGI Global, Hershey, PA, USA.Google Scholar
  22. Kemp, D.R., H. Xiangyang, D.L. Michalk, H. Fujiang, W. Jianping, and Z. Yingjung. 2013. Innovative grassland management systems for environmental and livelihood benefits. Proc. Natl. Acad. Sci. USA 110:8369–8374.CrossRefGoogle Scholar
  23. Kizeková, M., A. Hopkins, R. Kanianska, J. Makovníková, Š. Polák and B. Pálka. 2017. Changes in the area of permanent grasslands and its implications for the provision of bioenergy: Slovakia as a case study. Grass Forage Sci., doi: 10.1111/gfs.12333Google Scholar
  24. Ledgard, S.F., M. Boyes and F. Brentrup. 2011. Life cycle assessment of local and omported fertilizers used on New Zealand farms. In: L.D. Currie and C.L. Christensen (eds.), Adding to the Knowledge Base for the Nutrient Manager. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand. pp. 1–13.Google Scholar
  25. Linusson, A., G. Berlin and E. Olsson. 1998. Reduced community diversity in semi-natural meadows in southern Sweden, 1965–1990. Plant Ecol. 136:77–94.CrossRefGoogle Scholar
  26. Loreau, M., S. Naeem, P. Inchausti, J. Bengtsoon, J.P. Grime, A. Hector, D.U. Hooper, M.A. Huston, D., Raffaelli, B., Schmid, D. Tilman and D.A. Wardle. 2001. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 294:804–808.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Margalef, R. 1957. La teoria de la informacion en ecologia. Mem. Real Acad. Cienc. Artes Barcelona 32:373–449.Google Scholar
  28. May, R.M. 1975. Patterns of species abundance and diversity. In M.L. Cody and J.M. Diamond (eds.), Ecology and Evolution of Communities. Harvard University Press, Cambridge, MA. pp. 81–120.Google Scholar
  29. Millennium Ecosystem Assessment (MEA). 2005. Ecosystems and Human Well-being: Synthesis. Island Press, Washington DC.Google Scholar
  30. Nábrádi, A. 2004. The economic value of grassland products. Appl. Studies in Agribusiness and Commerce. Agroinform Publishing House. Budapest. Scientific papers. 19–28.Google Scholar
  31. Pignatti, S. 1982. Flora d’Italia. Edagricole, Bologna.Google Scholar
  32. Podani, J. 2000. Introduction to the Exploration of Multivariate Biological Data. Backhuys Publishing, Leiden, The Netherlands.Google Scholar
  33. Podani, J. and D. Schmera. 2011. A new conceptual and methodological framework for exploring and explaining pattern in presenceabsence data. Oikos 120:1625–1638.CrossRefGoogle Scholar
  34. Podani, J. and D. Schmera. 2012. A comparative evaluation of pairwise nestedness measures. Ecography 35:889–900.CrossRefGoogle Scholar
  35. Podani, J. and D. Schmera. 2016. Once again on the components of pairwise beta diversity. Ecol. Inform. 32:63–68.CrossRefGoogle Scholar
  36. Poldini L. 1991. Atlante corologico delle specie vascolari nel Friuli-Venezia Giulia. Regione Autonoma Friuli Venezia Giula and University of Trieste, Udine.Google Scholar
  37. Poldini, L., G. Sburlino, G. Buffa and M. Vidali. 2011. Correlations among biodiversity, biomass and other plant community parameters using the phytosociological approach: A case study from the south-eastern Alps. Plant Biosyst. 145:131–140.CrossRefGoogle Scholar
  38. Prins, W. and W. Kessler. 2014. The European Grassland Federation at 50: past, present and future. Grassl. Sci. Eu. 19:3–11.Google Scholar
  39. Samuil, C., V. Vintu, C. Sirbu and M. Stavarache. 2013. Influence of fertilizers on the biodiversity of seminatural grassland in the Eastern Carpathians. Not. Bot. Hortic. Agrobot. 41:195–200.CrossRefGoogle Scholar
  40. Sarno, R., P. Talamucci, A. Cavallero and L. Sringi. 1989. Distribuzione della produzione dei pascoli in ambienti marginali italiani. Guida alla valutazione della produttività. Progetto finalizzato CNR-IPRA Aree Marginali. Arti Grafiche Ed., Palermo.Google Scholar
  41. Schachtschabel, P. and W. Köster 1959. Chemische Untersuchungen an Marchen, 3. Kaliumfixierung und Kaliumnachlieferung. Pflanzenernchr. Düng. 89:148–159.CrossRefGoogle Scholar
  42. Simpson, G.G. 1943. Mammals and the nature of continents. Am. J. Sci. 241:1–31.CrossRefGoogle Scholar
  43. Simpson, G.G. 1960. Notes on the measurement of faunal resemblance. Am. J. Sci. 258:300–311.Google Scholar
  44. Stampfli, A. and M. Zeiter. 1999. Plant species decline due to abandonment of meadows cannot easily be reversed by mowing. A case study from the Southern Alps. J. Veg. Sci. 10:151–164.CrossRefGoogle Scholar
  45. Tasser, E. and U. Tappainer. 2002. Impact of land use changes on mountain vegetation. Appl. Veg. Sci. 5:173–184.CrossRefGoogle Scholar
  46. TEEB. 2010. The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations. Pushpam Kuman, Earthscan, London and Washington.Google Scholar
  47. Tilman, D., D. Wedin and J. Knops. 1996. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720.CrossRefGoogle Scholar
  48. Tilman D., P.B. Reich and J.M.H. Knops. 2006. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441:629–632.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Tjurin, I.V. 1951. Several results of study comparing humus composition in USSR soils Trudy Počvenogo Instituta 38:22–32.Google Scholar
  50. Török P., N. Hölzel, R. van Diggelen and S. Tischew. 2016. Grazing in European open landscapes: How to reconcile sustainable land management and biodiversity conservation? Agric. Ecosyst. Environ. 234:1–4.CrossRefGoogle Scholar
  51. Ulrich, W. and M. Almeida-Neto. 2012. On the meanings of nestedness: back to the basics. Ecography 35:1–7.CrossRefGoogle Scholar
  52. Ulrich, W., M. Almeida-Neto and N. Gotelli. 2009. A consumer’s guide to nestedness analysis. Oikos 118:3–17.CrossRefGoogle Scholar
  53. van der Maarel, E. 1975. The Braun-Blanquet approach in perspective. Vegetatio 30:213–219.CrossRefGoogle Scholar
  54. Walsh, L.M. and J.O. Beaton. (eds.) 1973. Soil Testing and Plant Analysis. Soil Science Society of America, Madison, WI, USA.Google Scholar
  55. Vargová, V., Z. Kovačiková and M. Michalec. 2012. Effects of rates and nutrient ratios on production and quality of phytomass at fertiliser application to an alluvial meadow. Agriculture 58:1–10.Google Scholar
  56. Wessa P. 2016. Partial Correlation (v1.0.7) in Free Statistics Software (v1.2.1), Office for Research Development and Education.

Copyright information

© Akadémiai Kiadó, Budapest 2017

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • M. Kizekova
    • 1
  • E. Feoli
    • 2
    Email author
  • G. Parente
    • 3
  • R. Kanianska
    • 4
  1. 1.National Agricultural and Food Centre - Grassland and Mountain Agriculture Research InstituteBanská BystricaSlovakia
  2. 2.Department of Life SciencesUniversity of TriesteItaly
  3. 3.Honorary Life PresidentEuropean Grassland FederationSan Vito al Tagl. to (Pordenone)Italy
  4. 4.Matej Bel University Banská Bystrica, Faculty of Natural SciencesBanská BystricaSlovakia

Personalised recommendations