Community Ecology

, Volume 18, Issue 3, pp 260–279 | Cite as

Recoding and multidimensional analyses of vegetation data: a comparison

  • S. CamizEmail author
  • P. Torres
  • V. D. Pillar


Two simulated coenoclines and a real data set were differently recoded with respect to the Braun-Blanquet coding (including presence/absence) and analysed through the most common multidimensional scaling methods. This way, we aim at contributing to the debate concerning the nature of the Braun-Blanquet coding and the consequent multidimensional scaling methods to be used. Procrustes, Pearson, and Spearman correlation matrices were computed to compare the resulting sets of coordinates and synthesized through their Principal Component Analyses (PCA). In general, both Procrustes and Pearson correlations showed high coherence of the obtained results, whereas Spearman correlation values were much lower. This proves that the main sources of variation are similarly identified by most of used methods/transformations, whereas less agreement results on the continuous variations along the detected gradients. The conclusion is that Correspondence Analysis on presence/absence data seems the most appropriate method to use. Indeed, presence/absence data are not affected by species cover estimation error and Simple Correspondence Analysis performs really well with this coding. As alternative, Multiple Correlation Analysis provides interesting information on the species distribution while showing a pattern of relevés very similar to that issued by PCA.


Braun-Blanquet coding Comparisons Correspondence Analysis Non-metric Multidimensional Scaling Principal Component Analysis Recoding 



Braun-Blanquet coding


Correspondence Analysis


Detrended Correspondence Analysis


Generalized Procrustes Analysis


Multiple Correlation Analysis


nonmetric MultiDimensional Scaling


Principal Component Analysis


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



For this work, Camiz and Pillar were supported by the Sapienza Università di Roma and Universidade Federal do Rio Grande do Sul grants for bilateral relations. Camiz was also granted by Sapienza’s agreement with Argentina and by the Special Visiting Researcher Fellowship of Brazilian CNPq, under the Brazilian Scientific Mobility Program “Ciências sem Fronteiras”, Process #: 314443/2014-2.

Supplementary material

42974_2017_18030260_MOESM1_ESM.pdf (69 kb)
Recoding and multidimensional analyses of vegetation data: a comparison


  1. Abdi, H. 2007. Singular value decomposition (SVD) and generalized singular value decomposition (GSVD). In: N. Salkind (ed.), Encyclopedia of Measurement and Statistics. Sage, Thousand Oaks, CA. pp. 940–945.Google Scholar
  2. Benzécri, J.-P. 1982. L’analyse des données. Dunod, Paris.Google Scholar
  3. Bräuer, H. 1982. Koordinaten-Schweinerei. Münchner Mediziner Wochenschrift 124. quoted in ROeS Nachristen, Biometrische Gesellschaft Region Oesterreich-Schweiz, 15:15.Google Scholar
  4. Braun-Blanquet, J. 1932. Plant Sociology: The Study of Plant Communities. McGraw-Hill, New York. English translation of Pflanzensoziologie by G.D. Fuller and H.S. Conard.Google Scholar
  5. Camiz, S. 1991. Reflections on spaces and relationships in ecological data analysis: effects, problems, and possible solutions. Coenoses 6:3–13.Google Scholar
  6. Camiz, S. 1993. Scopi e finalità dell’analisi della vegetazione e relativi schemi di rilevazione campionaria. In: S. Zani (ed.): Metodi statistici per le analisi territoriali, Studi urbani e regionali. Franco Angeli, Milano. pp. 301–322.Google Scholar
  7. Camiz, S. 1994. A procedure for structuring vegetation tables. Abstracta Botanica 18:57–70.Google Scholar
  8. Camiz, S. 2002. Contributions, à partir d’exemples d’application, à la méthodologie en analyse des données. Chap. 4 — Les données de végétation. Ph.D. thesis, Université Paris IX Dauphine.Google Scholar
  9. Camiz, S. 2005. The Guttman effect: its interpretation and a new redressing method. Data Analysis Bulletin 5:7–34.Google Scholar
  10. Camiz, S. and J.-J. Denimal. 2011. Procrustes analysis and stock markets. Case Studies in Business, Industry and Government Statistics 4:93–100.Google Scholar
  11. Carnevale, N. and P. Torres. 1990. The relevance of physical factors on species distributions in inland salt marshes (Argentina). Coenoses 5:113–120.Google Scholar
  12. Carnevale, N., P. Torres, S. Boccanelli and J.P. Lewis. 1987. Halophilous communities and species distributions along environmental gradients in southeastern Santa Fe Province, Argentina. Coenoses 2:49–60.Google Scholar
  13. Chytrý, M. et al.. 2016. ‘European Vegetation Archive (EVA): an integrated database of European vegetation plots. Appl. Veg. Sci. 19:173–180.CrossRefGoogle Scholar
  14. Diday, E. and J.-C. Simon. 1976. Clustering analysis. In: K. Fu (ed.), Digital Pattern Recognition. Springer, Berlin. pp. 47–94.CrossRefGoogle Scholar
  15. Dixon, P. 2003. VEGAN, a Package of R functions for community ecology. J. Veg. Sci. 14:927–930.CrossRefGoogle Scholar
  16. Eckart, C. and G. Young. 1936. The approximation of one matrix by another of lower rank. Psychometrika 1:211–218.CrossRefGoogle Scholar
  17. Frontier, S. 1976. Étude de la décroissance des valeurs propres dans une analyse en composantes principales: Comparaison avec le modèle du bâton brisé. J. Exp. Mar. Biol. Ecol. 25:67–75.CrossRefGoogle Scholar
  18. Gauch, H.G. 1982. Noise reduction by eigenvector ordinations. Ecology 63:1643–1649.CrossRefGoogle Scholar
  19. Goodall, D.W. and R. Johnson. 1982. Non-linear ordination in several dimensions. Vegetatio 48:197–208.Google Scholar
  20. Goodman, L.A. and W.H. Kruskal. 1954. Measures of association for cross classifications. J. Amer. Stat. Assoc. 49:732–764.Google Scholar
  21. Gower, J.C. 1975. Generalized procrustes analysis. Psychometrika 40:33–51.CrossRefGoogle Scholar
  22. Gower, J.C. and G.B. Dijksterhuis. 2004. Procrustes Problems. Oxford University Press, Oxford.Google Scholar
  23. Greenacre, M. 2007. Correspondence Analysis in Practice. 2nd ed. Chapman and Hall/CRC, London.CrossRefGoogle Scholar
  24. Guttman, L. 1953. A note on Sir Cyril Burt’s factorial analysis of qualitative data. Brit. J. Stat. Psychol. 6:21–24.CrossRefGoogle Scholar
  25. Hill, M.O. and H.G. Gauch. 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58.CrossRefGoogle Scholar
  26. Husson, F., S. Lê, and J. Pagès. 2017. Exploratory Multivariate Analysis by Example Using R. CRC Press, Boca Raton, FL..Google Scholar
  27. Ihm, P. and H. van Groenewoud. 1975. A multivariate ordering of vegetation data based on Gaussian type gradient response curves. J. Ecol. 63:767–777.CrossRefGoogle Scholar
  28. Ihm, P. and H. van Groenewoud. 1984. Correspondence analyses and Gaussian ordination. In: J.M. Chambers, J. Gordesch, A. Klas, L. Lebart, and P.P. Sint (eds.), Compstat Lectures. Physica-Verlag, Vienna. pp. 5–60.Google Scholar
  29. Johnson, R.W. and D.W. Goodall. 1980. A maximum likelihood approach to non-linear ordination. Vegetatio 41:133–142.CrossRefGoogle Scholar
  30. Kendall, M.G. 1938. A new measure of rank correlation. Biometrika 30:81–89.CrossRefGoogle Scholar
  31. Kenkel, N.C. and L. Orlóci. 1986, Applying metric and nonmetric multidimensional scaling to ecological studies: some new results. Ecology 67:919–928.CrossRefGoogle Scholar
  32. Kruskal, J.B. 1964a. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29:1–27.CrossRefGoogle Scholar
  33. Kruskal, J.B. 1964b Nonmetric multidimensional scaling: a numerical method. Psychometrika 29:115–129.CrossRefGoogle Scholar
  34. Kruskal, J.B. and F. Carmone. 1971. How to Use MD-SCAL (Version 5M): And Other Useful Information. Technical report, Bell Laboratories.Google Scholar
  35. Lebart, L., A. Morineau, and K.M. Warwick. 1984. Multivariate Descriptive Statistical Analysis; Correspondence Analysis and Related Techniques for Large Matrices. Wiley, New York.Google Scholar
  36. Lebart L., M. Piron, and A. Morineau. 2006. Statistique exploratoire multidimensionnelle: visualisation et inférences en fouilles de données. Dunod, Paris.Google Scholar
  37. Legendre, P. and L.F.J. Legendre. 2012. Numerical Ecology. 3rd ed. Elsevier, Amsterdam.Google Scholar
  38. Lisboa, F.J.G., P.R. Peres-Neto, G.M. Chaer, E. Da Conceio Jesus, R. J. Mitchell, S.J. Chapman, and R.L.L. Berbara. 2014. Much beyond Mantel: bringing Procrustes association metric to the plant and soil ecologist’s toolbox. PLoS ONE 9(6):e101238CrossRefPubMedPubMedCentralGoogle Scholar
  39. Minchin, P.R. 1987. Simulation of multidimensional community patterns: towards a comprehensive model. Vegetatio 71:145–156.Google Scholar
  40. Noy-Meir, I.. 1971. Multivariate analysis of the semi-arid vegetation in Southeastern Australia: nodal ordination by component analysis. Proc. Ecol. Soc. Aust. 6:159–193.Google Scholar
  41. O’Hara, R.B. and D.J. Kotze. 2010. Do not log-transform count data. Meth. Ecol. Evol. 1:118–122.CrossRefGoogle Scholar
  42. Oksanen, J. et al. 2017. Vegan: Community Ecology Package. R-package version 2.4–5. Technical report, URL
  43. Orlóci, L. 1978. Multivariate Analysis in Vegetation Research. 2nd ed. Junk, The Hague.Google Scholar
  44. Pillar, V.D. 2013. How accurate and powerful are randomization tests in multivariate analysis of variance? Community Ecol. 14: 153–163.CrossRefGoogle Scholar
  45. Podani, J. 1997. A measure of discordance for partially ranked data when presence/absence is also meaningful. Coenoses 12:127–130.Google Scholar
  46. Podani, J. 2001. SYN-TAX 2000. Computer Programs for Data Analysis in Ecology and Systematics. User’s Manual. Scientia, Budapest.Google Scholar
  47. Podani, J. 2005. Multivariate exploratory analysis of ordinal data in ecology: pitfalls, problems and solutions. J. Veg. Sci. 16:497–510.CrossRefGoogle Scholar
  48. Podani, J. 2006. Braun-Blanquet’s legacy and data analysis in vegetation science. J. Veg. Sci. 17:113–117.CrossRefGoogle Scholar
  49. R Core Team. 2015. A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  50. Ricotta, C. and G. Avena. 2006. On the evaluation of ordinal data with conventional multivariate procedures. J. Veg. Sci. 17:839–842.CrossRefGoogle Scholar
  51. Romane, F. 1972. Applications à la phytoécologie de quelques méthodes d’analyse multivariable. Ph.D. thesis, Université des Sciences et Techniques du Languedoc, Montpellier.Google Scholar
  52. Tukey, J.W. 1977. Exploratory Data Analysis. Addison-Wesley, Reading, MA.Google Scholar
  53. van der Maarel, E. 1966. Over Vegetatiestructuren, Relaties en Systemen, in het Bijzonder in de Duingraslanden van Voorne. Ph.D. thesis, Utrecht Universitaet, Utrecht.Google Scholar
  54. van der Maarel, E. 1979. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39:97–114.CrossRefGoogle Scholar
  55. White, G.C. and R.E. Bennetts. 1996, Analysis of frequency count data using the negative binomial distribution. Ecology 77:2549–2557.CrossRefGoogle Scholar
  56. Wilson, J.B. 2012. Species presence/absence sometimes represents a plant community as well as species abundances do, or better. J. Veg. Sci. 23:1013–1023.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2017

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Dipartimento di MatematicaSapienza Università di RomaRomaItaly
  2. 2.Facultad de Ciencias AgrariasUniversidad de RosarioRosarioArgentina
  3. 3.Departamento de EcologiaUniversidade Nacional do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations