Advertisement

Community Ecology

, Volume 18, Issue 2, pp 193–202 | Cite as

Regional processes drive bryophyte diversity and community composition in a small oceanic island

  • D. S. G. HenriquesEmail author
  • P. A. V. Borges
  • R. Gabriel
Open Access
Article
  • 3 Downloads

Abstract

How are bryophyte alpha and beta diversities distributed across spatial scales along an elevational gradient in an oceanic island? Which mechanisms and drivers operate to shape them? Starting from a multiscale hierarchical sampling approach along an 1000 m elevational transect, we used additive diversity partitioning and null modeling to evaluate the contributions of the alpha and beta diversity components to overall bryophyte diversity in Terceira Island, Azores. Substrate-level diversity patterns were explored by means of the Sørensen Similarity Index and the Lloyd Index of Patchiness. Elevation-level beta diversity was decomposed into its replacement and richness differences components, with several environmental variables being evaluated as diversity predictors. Bryophyte diversity proved to be primarily due to beta diversity between elevation sites, followed by diversity among substrates. Compositional differences between neighboring sites decreased with elevation, being mainly caused by species replacement and correlating with differences in relative humidity and disturbance. At the substrate level, we found a great homogeneity in terms of species composition, coupled with a low substrate specialization rate. We conclude that, in Terceira’s native vegetation patches, regional processes, such as environmental gradients associated with elevation, play a greater role in shaping bryophyte diversity than local processes. Moister and less disturbed areas at mid-high elevation harbor a richer bryoflora, consistently more similar and stable between neighbouring sites. Simultaneously, the different substrates available are somewhat ecologically redundant, supporting few specialized species, pointing to these areas providing optimal habitat conditions for bryophytes. Our findings provide a better understanding of how bryophyte diversity is generated in Terceira Island, indicating that management and conservation measures should focus on island-level approaches, aiming to protect and rehabilitate additional natural vegetation patches at different elevations, especially in the severely disturbed lowlands.

Keywords

Azores Beta diversity Climatic variables Disturbance Liverworts Mosses Spatial scale Substrate specificity 

Supplementary material

42974_2017_1802193_MOESM1_ESM.pdf (67 kb)
Supplementary material, approximately 69 KB.

References

  1. Agostinho, J. 1942. Clima dos Açores. Açoreana 3:35–65.Google Scholar
  2. Ah-Peng, C., N. Wilding, J. Kluge, B. Descamps-Julien, J. Bardat, M. Chuah-Petiot, D. Strasberg and T.A.J. Hedderson. 2012. Bryophyte diversity and range size distribution along two altitudinal gradients: Continent vs. island. Acta Oecol. 42:58–65.Google Scholar
  3. Andrew, N.R. and L. Rodgerson. 2003. Variation in invertebrate – bryophyte community structure at different spatial scales along altitudinal gradients. J. Biogeogr. 30:731–746.Google Scholar
  4. Aranda, S.C. 2013. Bryophyte diversity patterns in the Macaronesian region. Ph.D. thesis, Universidad de Alcalá, Madrid, Spain.Google Scholar
  5. Aranda, S.C., R. Gabriel, P.A.V. Borges and J.M. Lobo. 2010. Assessing the completeness of bryophyte inventories: an oceanic island as a case study (Terceira, Azorean archipelago). Biodivers. Conserv. 19:2469–2484.Google Scholar
  6. Aranda, S.C., R. Gabriel, P.A.V. Borges, A.M.C. Santos, E.B. Azevedo, J. Patiño, J. Hortal and J.M. Lobo. 2014. Geographical, temporal and environmental determinants of bryophyte species richness in the Macaronesian Islands. PLoS ONE 9:e101786.PubMedPubMedCentralGoogle Scholar
  7. Azevedo, E.B., L. Santos Pereira and B. Itier. 1999. Modelling the local climate in island environments: water balance applications. Agric. Water Manage. 40:393–403.Google Scholar
  8. Bates, J.W. and R. Gabriel. 1997. Sphagnum cuspidatum and S. imbricatum ssp. affine new to Macaronesia, and other new island records for Terceira, Azores. J. Bryol. 19:645–648.Google Scholar
  9. Bennie, J., K. Anderson and A. Wetherelt. 2011. Measuring biodiversity across spatial scales in a raised bog using a novel pairedsample diversity index. J. Ecol. 99:482–490.Google Scholar
  10. Cardoso, P., F. Rigal, S. Fattorini, S. Terzopoulou and P.A.V. Borges. 2013. Integrating landscape disturbance and indicator species in conservation studies. PLoS ONE 8:e63294.PubMedPubMedCentralGoogle Scholar
  11. Carvalho, J.C., P. Cardoso and P. Gomes. 2012. Determining the relative roles of species replacement and species richness differences in generating beta-diversity patterns. Global Ecol. Biogeogr. 21:760–771.Google Scholar
  12. Caujapé-Castells, J., A. Tye, D.J. Crawford, A. Santos-Guerra, A. Sakai, K. Beaver, W. Lobin, F.B. Vincent Florens, M. Moura and R. Jardim. 2010. Conservation of oceanic island floras: Present and future global challenges. Persp. Plant Ecol. Evol. Syst. 12:107–129.Google Scholar
  13. Courchamp, F., B.D. Hoffmann, J.C. Russell, C. Leclerc and C. Bellard. 2014. Climate change, sea-level rise, and conservation: Keeping island biodiversity afloat. Trends Ecol. Evol. 29:127–130.PubMedGoogle Scholar
  14. Dias, E. and C. Mendes. 2007. Characterisation of a basin mire in the Azores archipelago. Mires and Peat 2:1–11.Google Scholar
  15. Dias, E., C. Mendes, C. Melo, D. Pereira and R.B. Elias. 2005. Azores central islands vegetation and flora-field guide. Quercetea 7:123–173.Google Scholar
  16. Dias, E., C. Mendes and J. Shaw. 2009. Sphagnum recurvum P . Beauv. on Terceira, Azores, new to Macaronesia-Europe. J. Bryol. 31:199–201.Google Scholar
  17. Ellis, L.T., M. Aleffi, V.A. Bakalin, H. Bednarek-Ochyra, A. Bergamini, P. Beveridge, S.S. Choi, V. Fedosov, R. Gabriel, M.T. Gallego, S. Grdović, R. Gupta, V. Nath, A.K. Asthana, L. Jennings, H. Kürschner, M. Lebouvier, M.C. Nair, K.M. Manjula, K.P. Rajesh, M. Nobis, A. Nowak, S.J. Park, B-Y. Sun, V. Plášek, L. Číhal, S. Poponessi, M.G. Mariotti, A. Sabovljević, M.S. Sabovljević, J. Sawicki, N. Schnyder, R. Schumacker, M. Sim-Sim, D.K. Singh, D. Singh, S. Majumdar, S. Singh Deo, S. Ştefănuţ, M. Suleiman, C.M. Seng, M.S. Chua, J. Váňa, R. Venanzoni, E. Bricchi and M J. Wigginton. 2015. New national and regional bryophyte records, 42. J. Bryol. 37:68–85.Google Scholar
  18. Forjaz, V.H. 2004. Atlas básico dos Açores. OVGA, Ponta Delgada, Portugal.Google Scholar
  19. Gabriel, R. 2000. Ecophysiology of Azorean forest bryophytes. Ph.D. thesis, University of London, London, UK.Google Scholar
  20. Gabriel, R. and J.W. Bates. 2005. Bryophyte community composition and habitat specificity in the natural forests of Terceira, Azores. Plant Ecol. 177:125–144.Google Scholar
  21. Gabriel, R., M.C.M. Coelho, D.S.G. Henriques, P.A.V. Borges, R.B. Elias, J. Kluge and C. Ah-Peng. 2014. Long-term monitoring across elevational gradients to assess ecological hypothesis: a description of standardized sampling methods in oceanic islands and first results. Arquipélago. Life and Marine Sci. 31:45–67.Google Scholar
  22. Gabriel, R., N. Homem, A.B. Couto, S.C. Aranda and P.A.V. Borges. 2011. Azorean bryophytes: a preliminary review of rarity patterns. Açoreana 144:149–206.Google Scholar
  23. Gabriel, R., E. Sjögren, R. Schumacker, C. Sérgio, S.C. Aranda, D. Claro, N. Homem and B. Martins. 2010. Lista de Briófitos (Anthocerotophyta, Marchantiophyta, Bryophyta). In: Listagem dos organismos terrestres e marinhos dos Açores. Principia, Cascais, Portugal. pp. 99–115.Google Scholar
  24. Gering, J.C. and T.O. Crist. 2002. The alpha-beta-regional relationship: providing new insights into local-regional patterns of species richness and scale dependence of diversity components. Ecol. Lett. 5:433–444.Google Scholar
  25. Gering, J.C., T.O. Crist and J.A. Veech. 2003. Additive partitioning of species diversity across multiple spatial scales: Implications for regional conservation of biodiversity. Conserv. Biol. 17:488–499.Google Scholar
  26. Grau, O., J.-A. Grytnes and H.J.B. Birks. 2007. A comparison of altitudinal species richness patterns of bryophytes with other plant groups in Nepal, Central Himalaya. J. Biogeogr. 34:1907–1915.Google Scholar
  27. Henriques, D.S.G., P.A.V. Borges, C. Ah-Peng and R. Gabriel. 2016. Mosses and liverworts show contrasting elevational distribution patterns in an oceanic island (Terceira, Azores): the influence of climate and space. J. Bryol. 38:183–194.Google Scholar
  28. Hortal, J., P.A.V. Borges and C. Gaspar. 2006. Evaluating the performance of species richness estimators: Sensitivity to sample grain size. J. Animal Ecol. 75:274–287.Google Scholar
  29. Jost, L. 2010. Independence of alpha and beta diversities. Ecology 91:1969–1974.PubMedGoogle Scholar
  30. Jost, L., P. DeVries, T. Walla, H. Greeney, A. Chao and C. Ricotta. 2010. Partitioning diversity for conservation analyses. Divers. Distrib. 16:65–76.Google Scholar
  31. Kreft, H., W. Jetz, J. Mutke, G. Kier and W. Barthlott. 2008. Global diversity of island floras from a macroecological perspective. Ecol. Lett. 11:116–27.PubMedGoogle Scholar
  32. Lande, R. 1996. Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76:5–13.Google Scholar
  33. Legendre, P. 2014. Interpreting the replacement and richness difference components of beta diversity. Global Ecol. Biogeogr. 23:1324–1334.Google Scholar
  34. Legendre, P. and L. Legendre. 1998. Numerical Ecology. Elsevier, Amsterdam.Google Scholar
  35. Lloyd, M. 1967. Mean crowding. J. Animal Ecol. 36:1–30.Google Scholar
  36. Miller, H. and H. Whittier. 1990. Bryophyte floras of tropical Pacific islands. Trop. Bryol. 2:167–175.Google Scholar
  37. Mills, S.E., and S.E. Macdonald. 2004. Predictors of moss and liverwort species diversity of microsites in conifer-dominated boreal forest. J. Veg. Sci. 15:189–198.Google Scholar
  38. Müller, J. and M.M. Goßner. 2010. Three-dimensional partitioning of diversity informs state-wide strategies for the conservation of saproxylic beetles. Biol. Conserv. 143:625–633.Google Scholar
  39. Nekola, J.C., and P.S. White. 1999. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26:867–878.Google Scholar
  40. Nunes, R., R. Gabriel, R.B. Elias, F. Rigal, A.O. Soares, P. Cardoso and P.A.V. Borges. 2015. Arthropods and other biota associated with the Azorean trees and shrubs: Juniperus brevifolia. Arquipélago. Life and Marine Sci. 32:19–48.Google Scholar
  41. Paulay, G. 1994. Biodiversity on oceanic islands: Its origin and extinction. Integr. Compar. Biol. 34:134–144.Google Scholar
  42. Ricotta, C. 2005. On hierarchical diversity decomposition. J. Veg. Sci. 16:223–226.Google Scholar
  43. Ros, R.M., V. Mazimpaka, U. Abou-Salama, M. Aleffi, T.L. Blockeel, M. Brugués, R.M. Cros, M.G. Dia, G.M. Dirkse, I. Draper, W. El-Saadawi, A. Erdağ, A. Ganeva, R. Gabriel, J.M. González-Mancebo, C. Granger, I. Herrnstadt, V. Hugonnot, K. Khalil, H. Kürschner, A. Losada-Lima, L. Luís, S. Mifsud, M. Privitera, M. Puglisi, M. Sabovljević, C. Sérgio, H.M. Shabbara, M. Sim-Sim, A. Sotiaux, R. Tacchi, A. Vanderpoorten and O. Werner. 2013. Mosses of the mediterranean, an annotated checklist. Cryptogamie, Bryologie 34:99–283.Google Scholar
  44. Silveira, L.M.A. 2013. Aprender com a História: Modos de Interacção cpm a Natureza na Ilha Terceira (Do Povoamento ao seculo XX). Principia, Cascais, Portugal.Google Scholar
  45. Sjögren, E. 2003. Azorean bryophyte communities — a revision of differential species. Arquipélago. Life and Marine Sci. 20:1–29.Google Scholar
  46. Sjögren, E. 1997. Epiphyllous bryophytes in the Azores Islands. Arquipélago. Life and Marine Sci. 15:1–49.Google Scholar
  47. Söderström, L., A. Hagborg, M. Vo n Konrat, S. Bartholomew-Began, D. Bell, L. Briscoe, E. Brown, D.C. Cargill, D.P. da Costa, B.J. Crandall-Stotler, E.D. Cooper, G. Dauphin, J.J. Engel, K. Feldberg, D. Glenny, S.R. Gradstein, X. He, J. Heinrichs, J. Hentschel, A.L. Ilkiu-Borges, T. Katagiri, N.A. Konstantinova, J. Larraín, D.G. Long, M. Nebel, T. Pócs, F. Puche, E. Reiner-Drehwald, M.A. Renner, A. Sass-Gyarmati, A. Schäfer-Verwimp, J.G. Moragues, R. Stotler, P. Sukkharak, B.M. Thiers, J. Uribe, J. Váňa, J.C. Villarreal, M. Wigginton, L. Zhang and R.L. Zhu. 2016. World checklist of hornworts and liverworts. PhytoKeys 59:1–828.Google Scholar
  48. Soininen, J., R. McDonald and H. Hillebrand. 2007. The distance decay of similarity in ecological communities. Ecography 30:3–12.Google Scholar
  49. Song, L., W.-Z. Ma, Y.-L. Yao, W.-Y. Liu, S. Li, K. Chen, H.-Z. Lu, M. Cao, Z.-H. Sun, Z.-H. Tan and A. Nakamura. 2015. Bole bryophyte diversity and distribution patterns along three altitudinal gradients in Yunnan, China. J. Veg. Sci. 26:576–587.Google Scholar
  50. Southwood, T.R.E. and P.A. Henderson. 2000. Ecological Methods. Blackwell Science Ltd, London, UK.Google Scholar
  51. Spitale, D. 2016. The interaction between elevational gradient and substratum reveals how bryophytes respond to the climate. J. Veg. Sci. 27:844–853.Google Scholar
  52. Suren, A.M. 1996. Bryophyte distribution patterns in relation to macro, meso, and micro-scale variables in South Island, New Zealand streams. New Zealand Journal of Marine and Freshwater Research 30:501–523.Google Scholar
  53. Sutherland, W.J., R.P. Freckleton, H.C.J. Godfray, S.R. Beissinger, T. Benton, D.D. Cameron, Y. Carmel, D.A. Coomes, T. Coulson, M.C. Emmerson, R.S. Hails, G.C. Hays, D.J. Hodgson, M.J. Hutchings, D. Johnson, J.P.G. Jones, M.J. Keeling, H. Kokko, W.E. Kunin, X. Lambin, O.T. Lewis, Y. Malhi, N. Mieszkowska, E.J. Milner-Gulland, K. Norris, A.B. Phillimore, D.W. Purves, J.M. Reid, D.C. Reuman, K. Thompson, J.M.J. Travis, L.A. Turnbull, D.A. Wardle and T. Wiegand. 2013. Identification of 100 fundamental ecological questions (D. Gibson, Ed.). J. Ecol. 101:58–67.Google Scholar
  54. Tuba, Z., N.G. Slack and L.R. Stark. 2011. Bryophyte Ecology and Climate Change. Cambridge University Press, Cambridge, UK.Google Scholar
  55. Veech, J.A. and T.O. Crist. 2010. Diversity partitioning without statistical independence of alpha and beta. Ecology 91:1964–1969.PubMedGoogle Scholar
  56. Veech, J.A., K.S. Summerville, T.O. Crist and J.C. Gering. 2002. The additive partitioning of species diversity: recent revival of an old idea. Oikos 99:3–9.Google Scholar
  57. Wagner, K., G. Mendieta-Leiva and G. Zotz. 2015. Host specificity in vascular epiphytes: a review of methodology, empirical evidence and potential mechanisms. AoB PLANTS 7: plu092-plu092.PubMedPubMedCentralGoogle Scholar
  58. Warren, B.H., D. Simberloff, R.E. Ricklefs, R. Aguilée, F.L. Condamine, D. Gravel, H. Morlon, N. Mouquet, J. Rosindell, J. Casquet, E. Conti, J. Cornuault, J.M. Fernández-Palacios, T. Hengl, S.J. Norder, K.F. Rijsdijk, I. Sanmartín, D. Strasberg, K.A. Triantis, L.M. Valente, R.J. Whittaker, R.G. Gillespie, B.C. Emerson, C. Thébaud. 2015. Islands as model systems in ecology and evolution: Prospects fifty years after MacArthur-Wilson. Ecol. Lett. 18:200–217.PubMedGoogle Scholar
  59. Warwick, R.M. and K.R. Clarke. 1993. Increased variability as a symptom of stress in marine communities. J. Exp. Marine Biol. Ecol. 172:215–226.Google Scholar
  60. Whittaker, R.J. 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 30:279–338.Google Scholar
  61. Whittaker, R.J., K.J. Willis and R. Field. 2001. Scale and species richness: towards a general, hierarchical theory of species diversity. J. Biogeogr. 28:453–470.Google Scholar
  62. Wiens, J.A. 1989. Spatial scaling in ecology. Funct. Ecol. 3:385–397.Google Scholar
  63. Williams, S.E., H. Marsh and J. Winter. 2002. Spatial scale, species diversity, and habitat structure: small mammals in Australian tropical rain forest. Ecology 83:1317–1329.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2017

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited, you give a link to the Creative Commons License, and indicate if changes were made.

Authors and Affiliations

  • D. S. G. Henriques
    • 1
    Email author
  • P. A. V. Borges
    • 1
  • R. Gabriel
    • 1
  1. 1.CE3C – Centre for Ecology, Evolution and Environmental ChangesAzorean Biodiversity Group and Universidade dos Açores – Faculdade de Ciências Agrárias e do AmbienteAngra do Heroísmo, AçoresPortugal

Personalised recommendations