Community Ecology

, Volume 18, Issue 2, pp 184–192 | Cite as

A test of naturalness indicator values to evaluate success in grassland restoration

  • P. SenglEmail author
  • M. Magnes
  • L. Erdős
  • C. Berg
Open Access


How should the somewhat vague term of restoration success be measured? This is a critical question rooted in European law, where in fact the creation of proper replacement habitats is a prerequisite for permitting projects that trigger a loss of species or habitats. Previous studies have used indices that relied on a comparison to reference sites, for example the number of a predefined pool of target species or compositional similarity. However, since restoration sites have rarely the same biotic and abiotic conditions as reference sites, plant communities in restored sites will not perfectly match the reference sites. Furthermore, such indices fail when reference sites are lacking or degraded. Hence, there is a need for an alternative approach that evaluates the conservation value of a restored site independently from reference sites. We propose that naturalness indicator values can be an option to measure restoration success. The approach of using naturalness indicator values makes use of the fact that plants are able to indicate environmental parameters, including degradation and regeneration. We compared and measured the restoration success of three well-established methods for grassland restoration (sod transplantation, hay transfer, seeding) with three commonly used indices (diversity, number of target species, similarity to reference sites). The results verified earlier studies and showed that sod transplantation led to the highest restoration success followed by hay transfer and seeding of sitespecific seed mixtures. Further, we used those well-established indices for an evaluation of novel, naturalness-based indices (unweighted and cover-weighted mean naturalness indicator values, the sum of naturalness indicator values). While calculating the means of naturalness indicator values failed to offer conclusive information on restoration success, we could show that the sum of naturalness indicator values was highly correlated with the number of target species and compositional similarity to reference sites. Thus, our case study demonstrated that naturalness indices can be an excellent option to estimate success in grassland restoration.


Compensation measures Hay transfer Passive restoration Seeding Sod transplantation 



Cover-weighted mean Naturalness indicator values


Donor site for hay transfer


Donor site for sod transplantation


Frequency positive fidelity index (Tichý 2005)


Simpson’s Index


Sum of Naturalness indicator values


Number of target species


Unweighted Mean Naturalness indicator values

Supplementary material

42974_2017_1802184_MOESM1_ESM.xlsx (31 kb)
Supplementary material, approximately 32 KB.
42974_2017_1802184_MOESM2_ESM.xlsx (14 kb)
Supplementary material, approximately 14 KB.


  1. Alday, J.G. and R.H. Marrs. 2013. A simple test for alternative states in ecological restoration: the use of principal response curves. Appl. Veg. Sci. 17:302–311.CrossRefGoogle Scholar
  2. Bakker, J.P, A.P. Grootjans, M. Hermy and P. Poschlod. 2000. How to define targets for ecological restoration? — Introduction. Appl. Veg. Sci. 3:1–72.CrossRefGoogle Scholar
  3. Berg, C., A. Abdank, M. Isermann, F. Jansen, T. Timmermann and J. Dengler. 2014. Red Lists and conservation prioritization of plant communities — a methodological framework. Appl. Veg. Sci. 17:504–515.CrossRefGoogle Scholar
  4. Borhidi, A. 1995. Social behaviour types, the naturalness and relative indicator values of the higher plants in the Hungarian Flora. Acta Bot. Hung. 39:97–181.Google Scholar
  5. Chytrý, M. and Z. Otýpková. 2003. Plot sizes used for phytosociological sampling of European vegetation. J. Veg. Sci. 14:563–570.CrossRefGoogle Scholar
  6. Conrad, M.K. and S. Tischew. 2011. Grassland restoration in practice: Do we achieve the targets? A case study from Saxony-Anhalt/Germany. Ecol. Eng. 37:1149–1157.CrossRefGoogle Scholar
  7. Cseresnyés, I., E. Cseresnyés-Bózsing, J. Tamás, Z. Barina and P. Csontos. 2014. Effect of Austrian pine on naturalness and succession of vegetation in reclaimed bauxite quarries. Appl. Ecol. Environ. Res. 12:931–946.CrossRefGoogle Scholar
  8. Dengler, J., M. Chytrý and J. Ewald. 2008. Phytosociology. In: S.E. Jørgensen and B.D. Fath (eds.) General Ecology Vol. 4 of Encyclopedia of Ecology. Elsevier, Oxford, pp. 2767–2779.CrossRefGoogle Scholar
  9. Dengler, J., M. Janišová, P. Török and C. Wellstein. 2014. Biodiversity of Palaearctic grasslands: a synthesis. Agric. Ecosyst. Environ. 182:1–14.CrossRefGoogle Scholar
  10. de Snoo, G.R., N. Naus, J. Verhulst, J. van Ruijven and A.P Schaffers. 2012. Long-term changes in plant diversity of grasslands under agricultural and conservation management. Appl. Veg. Sci. 15:299–306.CrossRefGoogle Scholar
  11. Diekmann, M. 2003. Species indicator values as an important tool in applied plant ecology — a review. Basic Appl. Ecol. 4:493–506.CrossRefGoogle Scholar
  12. Ellenberg, H., H. Weber, R. Düll, V. Wirth, W. Werner and D. Paulißen. 1991. Zeigerwerte von Pflanzen in Mitteleuropa. Scr. Geobot. 18:1–248.Google Scholar
  13. Ellmauer, T. and L. Mucina. 1993. Molinia-Arrhenateretea. In: L. Mucina, G. Grabherr and T. Ellmauer (eds), Die Pflanzengesellschaften Österreichs. Teil 1: Anthropogene Vegetation, Gustav Fischer, Jena, Stuttgart, New York. pp. 297–401.Google Scholar
  14. Erdős, L., Z. Bátori, K. Penksza, A. Dénes, B. Kevey, D. Kevey, M. Magnes, P. Sengl and C. Tölgyesi. 2017. Can naturalness indicator values reveal habitat degradation? A test of four methodological approaches. Pol. J. Ecol. 65:1–13.CrossRefGoogle Scholar
  15. European Commission (EC). 1992. Council directive 92/43/EEC of May 1992 on the conservation of natural habitats and of wild fauna and flora. O. J. L206:7–50.Google Scholar
  16. European Commission (EC). 2014. Directive 2014/52/EU of the European Parliament and of the Council of 16 April 2014 amending Directive 2011/92EU on the assessment of the effects of certain public and private projects on the environment. O. J. L124:1–18.Google Scholar
  17. Fagan, K.C., R.F. Pywell, J.M. Bullock and R.H. Marrs. 2008. Do restored calcareous grasslands on former arable fields resemble ancient targets? The effect of time, methods and environment on outcomes. J. Appl. Ecol. 45(4): 1293–1303.CrossRefGoogle Scholar
  18. Fischer, M.A., K. Oswald and W. Adler. 2008. Exkursionsflora für Österreich, Liechtenstein und Südtirol (3rd ed.). Oberösterreichische Landesmuseen, Linz.Google Scholar
  19. Galvánek, D. and J. Lepš. 2008. Changes of species richness pattern in mountain grasslands: abandonment versus restoration. Biodivers. Conserv. 17:3241–3253.CrossRefGoogle Scholar
  20. Habel, J.C., J. Dengler, M. Janišová, P. Török, C. Wellstein and M. Wiezik. 2013. European grassland ecosystems: threatened hotspots of biodiversity. Biodivers. Conserv. 22:2131–2138.CrossRefGoogle Scholar
  21. Hájek, M., P. Hájková, D. Sopotlieva, I. Apostolova and N. Velev. 2008. The Balkan wet grassland vegetation: a prerequisite to better understanding of European habitat diversity. Plant. Ecol. 195:197–213.CrossRefGoogle Scholar
  22. Hermy, M., O Honnay, L. Firbank, C. Grashof-Bokdam and J.E. Lawesson. 1999. An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation. Biol. Conserv. 91:9–22.CrossRefGoogle Scholar
  23. Hobbs, R.J., E. Higgs and J.A. Harris. 2009. Novel ecosystems: implications for conservation and restoration. Trends Ecol. Evol. 24:599–605.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Holm, S. 1979. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6:65–70.Google Scholar
  25. Kiehl, K., A. Thormann and J. Pfadenhauer. 2006. Evaluation of initial restoration measures during the restoration of calcareous grasslands on former arable fields. Restor. Ecol. 14:148–156.CrossRefGoogle Scholar
  26. Kiehl, K., A. Kirmer, T.W. Donath, L. Rasran and N. Hölzel. 2010. Species introduction in restoration projects — evaluation of different techniques for the establishment of semi-natural grasslands in Central and North-western Europe. Basic Appl. Ecol. 11:285–299.CrossRefGoogle Scholar
  27. Kilian, W., F. Müller and F. Starlinger. 1994. Die forstlichen Wuchsgebiete Österreichs — Eine Naturraumgliederung nach waldökologischen Gesichtspunkten. Forstliche Bundesversuchsanstalt, Vienna.Google Scholar
  28. Kim, Y.-M., S. Zerbe and I. Kowarik. 2002. Human impact on flora and habitats in Korean rural settlements. Preslia 74:409–419.Google Scholar
  29. Klimkowska, A., R. Van Diggelen, J.P. Bakker and A.P. Grootjans. 2007. Wet meadow restoration in Western Europe: A quantitative assessment of the effectiveness of several techniques. Biol. Conserv. 140:318–328.CrossRefGoogle Scholar
  30. Klotz, S. and I. Kiihn. 2002. Indikatoren des anthropogenen Einflusses auf die Vegetation. In: BIOLFLOR — Eine Datenbank mit biologisch-ökologischen Merkmalen zur Flora von Deutschland. Schr.reihe Veg.kd. 38:241–246.Google Scholar
  31. Kowarik, I. 1990. Some responses of flora and vegetation to urbanization in Central Europe. In: H. Sukopp, S. Hejný and I. Kowarik (eds.) Urban Ecology: Plants and Plant Communities in Urban Environments. SPB Academic, The Hague.Google Scholar
  32. Lebensministerium. 2016. eBod. Accessed 21 February 2016.
  33. Lengyel, S., K. Varga, B. Kosztyi, L. Lontay, E. Deri, P. Török and B. Tóthmérész. 2012. Grassland restoration to conserve landscape-level biodiversity: a synthesis of early results from a large-scale project. Appl. Veg. Sci. 15(2):264–276.CrossRefGoogle Scholar
  34. Machado, A. 2004. An index of naturalness. J. Nat. Conserv. 12:95–110.CrossRefGoogle Scholar
  35. Martin, L.M., K.A. Moloney and B.J. Wilsey 2005. An assessment of grassland restoration success using species diversity components. J. Appl. Ecol. 42:327–336.CrossRefGoogle Scholar
  36. McCoy, E.D. and H.R. Mushinsky 2002. Measuring the success of wildlife community restoration. Ecol. Appl. 12:1861–1871.CrossRefGoogle Scholar
  37. Mitchley, J., I. Jongepierova and K. Fajmon. 2012. Regional seed mixtures for the re-creation of species-rich meadows in the White Carpathian Mountains: results of a 10-yr experiment. Appl. Veg. Sci. 15:253–263.CrossRefGoogle Scholar
  38. Oberdorfer, E. 2001. Pflanzensoziologische Exkursionsflora für Deutschland und angrenzende Gebiete, 8th edn. Eugen Ulmer, Stuttgart.Google Scholar
  39. Pfadenhauer, J. 2001. Some remarks on the socio-cultural background of restoration ecology. Restor. Ecol. 9:220–229.CrossRefGoogle Scholar
  40. Poschlod, P., J.P. Bakker and S. Kahmen. 2005. Changing land use and its impact on biodiversity. Basic Appl. Ecol. 6:93–98.CrossRefGoogle Scholar
  41. Prach, K. 2007. Alluvial meadows under changing management: Their degradation and restoration. In: T. Okruszko, E. Maltby. J. Szatylowicz and W. Kotowski. (eds.), Wetlands: Monitoring, Modelling and Management. Taylor & Francis, London, pp. 265–271.Google Scholar
  42. R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL:
  43. Rosenthal, G. 2003. Selecting target species to evaluate the success of wet grassland restoration. Agric. Ecosyst. Environ. 98: 227–246.CrossRefGoogle Scholar
  44. Ruiz-Jaen, M.C and T.M. Aide. 2005. Restoration success: how is it being measured? Restor. Ecol. 13:569–577.CrossRefGoogle Scholar
  45. Scotton, M., P. Golinski, A. Baasch and S. Tischew. 2012. Management options and monitoring of restoration success. In: M. Scotton, A. Kirmer and B. Krautzer. (eds.), Practical Handbook for Seed Harvest and Ecological Restoration of Species-rich Grasslands. Cooperativa Libraria Editrice Universitá di Padova. pp. 59–64.Google Scholar
  46. Sengl, P., M. Magnes, V. Wagner, L. Erdős and C. Berg. 2016. Only large and highly connected semi-dry grasslands achieve plant conservation targets in an agricultural matrix. Tuexenia 36:167–190.Google Scholar
  47. Sengl, P., M. Magnes, K. Weitenthaler, V. Wagner, L. Erdős and C. Berg. 2017. Restoration of lowland meadows in Austria: a comparison of five techniques. Basic Appl. Ecol. 24: 19–29.CrossRefGoogle Scholar
  48. Sengl, P., V. Wagner and M. Magnes. 2015. Semi-dry grassland restoration in the SE Alpine foreland of Austria — a study of early spontaneous colonisation patterns. Hacquetia 14:97–112.CrossRefGoogle Scholar
  49. Society for Ecological Restoration International Science & Policy Working group (SER). 2004. The SER International Primer on Ecological Restoration, & Tucson: Society for Ecological Restoration International.
  50. Straškrabová, J. and K. Prach. 1998. Five years of restoration of alluvial meadows: A case study from Central Europe. In: C. Joyce and P. Wade, (eds.), European Wet Grasslands: Biodiversity, Management and Restoration. Wiley, Chichester, pp. 295–303.Google Scholar
  51. Suding, K.N. 2011. Toward an era of restoration in ecology: successes, failures, and opportunities ahead. Ann. Rev. Ecol. Evol. Syst. 42:465–187.CrossRefGoogle Scholar
  52. Suding, K.N., K.L. Gross and G.R. Houseman. 2004. Alternative states and positive feedbacks in restoration ecology. Trends Ecol. Evol. 19:46–53.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Sukopp, H. 1972. Wandel von Flora und Vegetation in Mitteleuropa unter dem Einfluß des Menschen. Berichte Landwirtschaft 50: 112–139.Google Scholar
  54. Tichý, L. 2005. New similarity indices for the assignment of relevés to the vegetation units of an existing phytosociological classification. Plant Ecol. 179:67–72.CrossRefGoogle Scholar
  55. Tischew, S., A. Baasch, M.K. Conrad and A. Kirmer. 2010. Evaluating restoration success of frequently implemented compensation measures: results and demands for control procedures. Restor. Ecol. 18:467–480.CrossRefGoogle Scholar
  56. Török, K. and K. Szitár. 2010. Long-term changes of rock grassland communities in Hungary. Community Ecol. 11:68–76.CrossRefGoogle Scholar
  57. Török, P., E. Vida, B. Deák, S. Lengyel and B. Tóthmérész. 2011. Grassland restoration on former croplands in Europe: an assessment of applicability of techniques and costs. Biodiv Conserv. 20:2311–2332.CrossRefGoogle Scholar
  58. Török, P., T. Miglécz, O. Valkó, A. Kelemen, B. Deák, A. Lengyel and B. Tóthmérész. 2012. Recovery of native grass biodiversity by sowing on former croplands: Is weed suppression a feasible goal for grassland restoration? J. Nature Conserv. 20:41–48.CrossRefGoogle Scholar
  59. Valkó, O., B. Deak, P. Török, A. Kelemen, T. Miglécz, K. Tóth and B. Tóthmérész. 2016. Abandonment of croplands: problem or chance for grassland restoration? Case studies from Hungary. Ecosyst. Health Sustain. 2 (2):e01208.CrossRefGoogle Scholar
  60. Valkó, O., B. Deák, P. Török, A. Kelemen, T. Miglécz and B. Tóthmérész. 2017. Filling up the gaps—Passive restoration does work on linear landscape elements. Ecol. Eng. 102:501–508.CrossRefGoogle Scholar
  61. van Diggelen, R. and R.H. Marrs. 2003. Restoring plant communities – Introduction. Appl. Veg. Sci. 6:106–110.Google Scholar
  62. Vrahnakis, M., M. Janisova, S. Rusina, P. Torok, S. Venn and J. Dengler. 2013. The European Dry Grassland Group ( EDGG ): stewarding Europe’s most diverse habitat type. In: Baumbach, H. and S. Pfützenreuter (eds.), Steppenlebensräume Europas — Gefährdung, Erhaltungsmaßnahmen und Schutz. Thüringer Ministerium fur Landwirtschaft, Forsten, Umwelt und Naturschutz, Erfurt, pp. 417–434.Google Scholar
  63. White, P.S. and J.L. Walker. 1997. Approximating nature’s variation: selecting and using reference information in restoration ecology. Restor. Ecol. 5:338–349.CrossRefGoogle Scholar
  64. Wilson, J.B. 2013. Biodiversity theory applied to the real world of ecological restoration. Appl. Veg. Sci. 16:5–7.CrossRefGoogle Scholar
  65. Zentralanstalt für Meteorologie und Geodynamik (ZAMG). 2016. Klimadaten von Österreich 1981–2010. Accessed 15 February 2016.
  66. Zedler, J.B. 2005. Success: an unclear, subjective descriptor of restoration outcomes. Ecol. Restor. 25:162–168.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2017

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Civil Engineering Office Kofler UmweltmanagementAustria
  2. 2.Institute of Plant SciencesUniversity of GrazAustria
  3. 3.Institute of Ecology and BotanyMTA Centre for Ecological ResearchVácrátótHungary

Personalised recommendations