Community Ecology

, Volume 18, Issue 2, pp 215–223 | Cite as

Assessing habitat-related disturbance in bird communities: Applying hemeroby and generalism as indicators

  • C. BattistiEmail author
  • G. Fanelli
  • D. Pavel
  • L. Redolfi De Zan
  • S. Rossi de Gasperis
  • G. Caneva
Open Access


We tested the application of the concept of hemeroby and generalism at community level, on a set of birds occurring in various habitats of central Italy characterized by different level of disturbance. In each habitat-related bird community, we applied the recently published species-specific score in hemeroby (a proxy of habitat-related disturbance; HSi) and hemerobiotic diversity (a proxy of generalism; H’Hi) to local species frequency, obtaining weighted values at community level (HStot and H’Htot). The relationship between HStot vs. H’Htot showed an increasing trend moving from reed beds through forests and mosaics to urban communities. Quadratic model (best fit) evidenced a significant correlation between these variables and a tendency toward a hump-shaped curve, corroborating results already observed at species level (intermediate generalism hypothesis). The co-inertia analysis discriminated four groups of habitat-related communities, characterized by species with different levels of disturbance-sensitivity (expressed by HSi) and generalism (expressed by hemerobiotic diversity; H’Hi): (i) forest type-related, where mature wood communities were separated from a coppiced wood one; (ii) communities of moderately disturbed agricultural habitats; (iii) communities embedded in highly disturbed mosaics, and (iv) a group including either a highly disturbed urban habitat or a low disturbed wetland reed bed, with highly specialized species (respectively, synanthropic species and water-related species). Total scores in hemeroby and hemerobiotic diversity, expressing the composition in species with different disturbance preference and generalism, might act as good community-based indicators of degree of naturalness, especially for forest habitat types.


Habitat-related communities Hemeroby score Hemerobiotic diversity score Hump-shaped pattern Intermediate generalism hypothesis 



Co-Inertia Analysis


Hemeroby Score


Hemerobiotic diversity


Principal Components Analysis

Supplementary material

42974_2017_1802215_MOESM1_ESM.pdf (27 kb)
S1. Relative frequencies of the species for each habitat-related community. For habitat type description and codes, see Table 1.


  1. Anderson, J.E. 1991. A conceptual framework for evaluating and quantifying naturalness. Conserv. Biol. 5:347–352.CrossRefGoogle Scholar
  2. Báldi, A. and Kisbenedek, T. 1999. Species-specific distribution of reed-nesting passerine birds across reed bed edges: effects of spatial scale and edge type. Acta Zool. Hung. 45:97–114.Google Scholar
  3. Battisti, C, Capecchi, P. 2015. L’avifauna della Riserva naturale provinciale “Villa Borghese di Nettuno” (Italia centrale), con particolare riferimento alla composizione e struttura della comunità nidificante. Boll. Mus. Civ. St. Nat. Verona, Bot. Zool. 39:1–8.Google Scholar
  4. Battisti, C. and Fanelli, G. 2011. Does human-induced heterogeneity differently affect diversity in vascular plants and breeding birds? Evidences from three Mediterranean forest patches. Rendiconti Lincei 22:25–30.CrossRefGoogle Scholar
  5. Battisti C. and Fanelli G. 2015a. Applying indicators of disturbance from plant ecology to vertebrates: The hemeroby of bird species. Ecol. Indic. 61:799–805.CrossRefGoogle Scholar
  6. Battisti, C. and Fanelli, G. 2015b. Don’t think local! Scale in conservation, parochialism, dogmatic bureaucracy and the implementing of the European Directives. J. Nat. Conserv. 24:24–30.CrossRefGoogle Scholar
  7. Battisti, C, Poeta, G. and Fanelli, G. 2016. An Introduction to Disturbance Ecology. A Road Map for Wildlife Management and Conservation. Springer, Cham, Switzerland.CrossRefGoogle Scholar
  8. Belmaker, J., Sekercioglu, C.H. and Jetz, W. 2012. Global patterns of specialization and coexistence in bird assemblages. J. Biogeogr. 39:193–203.CrossRefGoogle Scholar
  9. Benassi, G., Battisti, C., Luiselli, L. and Boitani, L. 2009. Area-sensitivity of three reed bed bird species breeding in Mediterranean marshland fragments. Wetl. Ecol. Manag. 17:555–564.CrossRefGoogle Scholar
  10. Benton, T.G., Vickery, J.A. and Wilson, J.D. 2003. Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol. Evol. 18:182–188.CrossRefGoogle Scholar
  11. Bianconi R., Battisti C, Zapparoli M. 2004. Pattern of richness, abundance and diversity of four interior bird species in a hilly landscape in Central Italy: a contribution to assess their sensitivity to habitat fragmentation. J. Medit. Ecol. 4:37–44.Google Scholar
  12. Bibby, C.J., Burgess, N.D., Hill, D.A. and Mustoe, S.H. 2000. Bird Census Techniques, 2nd ed. Academic Press, London.Google Scholar
  13. Blair, R. 2004. The effects of urban sprawl on birds at multiple levels of biological organization. Ecology and Society 9(5):2. [online] URL: Scholar
  14. Bossel, H. 1999. Indicators for Sustainable Development: Theory Method, Applications. International Institute for Sustainable Development, Winnipeg.Google Scholar
  15. Bossuyt, B., Hermy, M. and Deckers, J. 1999. Migration of herbaceous plant species across ancient recent forest ecotones in central Belgium. J. Ecol. 87:517–527CrossRefGoogle Scholar
  16. Brawn, J. D., Robinson, S. K. and Thompson III, F. R. 2001. The role of disturbance in the ecology and conservation of birds. Ann. Rev. Ecol. Syst. 32:251–276.CrossRefGoogle Scholar
  17. Canterbury, G.E., Martin, T.E., Petit, D.R., Petit, L.J. and Bradford, D.F. 2000. Bird communities and habitat as ecological indicators of forest condition in regional monitoring. Conserv. Biol. 14:544–558.CrossRefGoogle Scholar
  18. Clements, J.F. 2000. Birds of the World, a Checklist. Fifth edition, Ibis, Vista, Ca.Google Scholar
  19. Crooks, K.R., Suarez, A.V. and Bolger, D.T. 2004. Avian assemblages along a gradient of urbanization in a highly fragmented landscape. Biol. Conserv. 115:451–462.CrossRefGoogle Scholar
  20. Devictor, V, Julliard, R., Clavel, J., Jiguet, F, Lee, A. and Couvet, D. 2008a. Functional biotic homogenization of bird communities in disturbed landscapes. Global Ecol. Biogeogr. 17:252–261.CrossRefGoogle Scholar
  21. Devictor, V, Julliard, R. and Jiguet, F. 2008b. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117:507–514.CrossRefGoogle Scholar
  22. Devictor, V and Robert, A. 2009. Measuring community responses to large-scale disturbance in conservation biogeography Divers. Distrib. 15:122–130.CrossRefGoogle Scholar
  23. Dornelas, M. 2010. Disturbance and change in biodiversity. Phil. Trans. R. Soc. B 365:3719–3727.CrossRefPubMedGoogle Scholar
  24. Ewers, R.M. and Didham, R.K. 2006. Confounding factors in detection of species responses to habitat fragmentation. Biol. Rev. 81:117–142.CrossRefGoogle Scholar
  25. Fanelli, G. and Battisti, C. 2014. Comparing disturbance-sensitivity between plants and birds: a fine-grained analysis in a suburban remnant wetland. Isr. J. Ecol. Evol. 60:11–17.CrossRefGoogle Scholar
  26. Fanelli, G. and Battisti C. 2015. Range of species occupancy, disturbance and generalism: applying hemeroby metrics to common breeding birds from a regional Atlas. Vie et Milieu – Life and Environment 65 (4):243–250.Google Scholar
  27. Fanelli, G., Tescarollo, P. and Testi, A. 2005. Ecological indicators applied to urban and suburban floras. Ecol. Indic. 6:444–457.CrossRefGoogle Scholar
  28. Grabherr, G., Koch, G., Kirchmeir, H. and Reiter, K. 1998. Hemerobie österreichischer Waldökosysteme. Veröff. Des Österreichischen MAB-Programms 17:493 S.Google Scholar
  29. Gregory, R.D., Noble, D., Field, R., Marchant, J., Raven, M. and Gibbons, D.W. 2003. Using birds as indicators of biodiversity. Ornis Hungarica 12:11–24.Google Scholar
  30. Gregory, R. D., Noble D.G., and Custance, J. 2004. The state of play of farmland birds: population trends and conservation status of lowland farmland birds in the United Kingdom. Ibis 146 (s2):1–13.CrossRefGoogle Scholar
  31. Henle, K, Davies, K.F., Kleyer, M., Margules, C. and Settele, J. 2004. Predictors of species sensitivity to fragmentation. Biodiv Conserv. 13:207–251.CrossRefGoogle Scholar
  32. Hill, M.O., Roy, D.B. and Thompson, K. 2002. Hemeroby, urbanity and ruderality: bioindicators of disturbance and human impact. J. Appl. Ecol. 39:708–720.CrossRefGoogle Scholar
  33. Katayama, N, Amano, T, Naoe, S., Komatsu, I., Takagawa, S., Sato, N, Ueta, M. and Miyashita, T. 2014. Landscape heterogeneity-biodiversity relationship: effect of range size. PLOS One 9:e93359.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Koch, A.J., Drever, M.C and Martin, K. 2011. The effcacy of common species as indicators: avian responses to disturbance in British Columbia. Biodiv. Conserv. 20:3555–3575.CrossRefGoogle Scholar
  35. Kowarik, I. 1988. Zummenschlichen Einfluss auf Flora und Vegetation: Theoretische Konzepte und ein Quanti fizierungsansatz am Beispiel von Berlin (West). Landschafltsentwicklung und Umweltforschung, Schriftenreihe des Fachbereichs Landschaftsentwicklung der TU Berlin Vol. 56:241.Google Scholar
  36. Julliard, R., Clavel, J., Devictor, V, Jiguet, F. and Couvet, D. 2006. Spatial segregation of specialists and generalists in bird communities. Ecol. Lett. 9:1237–1244.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lack, PC. 1986. The Atlas of Wintering Birds in Britain and Ireland. TAD Poyser, London.Google Scholar
  38. Malavasi, R., Battisti, C. and Carpaneto, G.M. 2009. Seasonal bird assemblages in a Mediterranean patchy wetland: corroborating the intermediate disturbance hypothesis. Pol. J. Ecol. 57:171–179.Google Scholar
  39. Marzluff, J.M., Bowman, R. and Donnelly, R. (eds.) 2001. Avian Ecology and Conservation in an Urbanizing World. Kluwer Academic Publishers, New York.Google Scholar
  40. Matthysen, E., Lens, L., Van Dongen, S., Verheyen, G.R., Wauters, L.A., Adriaensen, F. and Dhondt, A.A. 1995. Diverse effects of forest fragmentation on a number of animal species. Belg. J. Zool. 125:175–183.Google Scholar
  41. Morelli, F., Benedetti, Y., Ibáñez Álamo, J. D., Jokimäki, J., Mänd, R., Tryjanowski, P. and Møller, A.P. 2016. Evidence of evolutionary homogenization of bird communities in urban environments across Europe. Glob. Ecol. Biogeogr. 25 :1284–1293.CrossRefGoogle Scholar
  42. Mouillot, D., Graham, N.A.J., Villéger, S. and Mason, N.W.H. 2013. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28:167–177.CrossRefPubMedGoogle Scholar
  43. Paracuellos, M. 2006. Relationship of song bird occupation with habitat configuration and bird abundance in patchy reed beds. Ardea 94:87–98Google Scholar
  44. Peterken, G.F. 1974. A method for assessing woodland flora for conservation using indicator species. Biol. Conserv. 6:239– 247.CrossRefGoogle Scholar
  45. R Core Team . 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  46. Redolfi De Zan, L., Rossi de Gasperis S., Fiore L., Battisti, C. and Carpaneto, G.M. 2016. The importance of dead wood for holenesting birds: a two years study in three beech forests of central Italy. Isr. J. Ecol. Evol. DOI: 10.1080/15659801.2016.1191168.Google Scholar
  47. Reif, A. and Walentowski, H. 2008 The assessment of naturalness and its role for nature conservation and forestry in Europe. Waldökologie, Landschaftsforschung und Naturschutz 6:63–76.Google Scholar
  48. Reif, J., Marhoul, P. and Koptík, J. 2013. Bird communities in habitats along a successional gradient: Divergent patterns of species richness, specialization and threat. Basic Appl. Ecol. 14:423–431.CrossRefGoogle Scholar
  49. Rossi de Gasperis, S., Redolfi De Zan, L., Battisti, C., Reichegger, I. and Carpaneto, G.M. 2016. Distribution and abundance of holenesting birds in Mediterranean forests: impact of past management patterns on habitat preference. Ornis Fenn. 93:100–110.Google Scholar
  50. Schleupner, C. and Schenider, U.A. 2013. Allocation of European wetland restoration options for systematic conservation planning. Land Use Policy 30:604–614.CrossRefGoogle Scholar
  51. Sharrock, J.T.R. 1976. The Atlas of Breeding Birds in Britain and Ireland. T. and A.D. Poyser, London.Google Scholar
  52. Steinhardt, U., Herzog, F., Lausch, A., Miller, E. and Lehmann, S. 1999. Hemeroby index for landscape monitoring and evaluation. In: Pykh, Y.A. et al. (eds.), Environmental Indices – System Analysis Approach. EOLSS Publishing, Oxford, pp. 237–254.Google Scholar
  53. Sousa, W.P. 1984. The role of disturbance in natural communities. Ann. Rev. Ecol. Syst. 15:353–391.CrossRefGoogle Scholar
  54. Suárez-Soane, S., Osborne, P.E., Alonso, J.C. 2002. Large-scale habitat selection by agricultural steppe birds in Spain: identifying species-habitat responses using generalized additive models. J. Appl. Ecol. 39:755–771.CrossRefGoogle Scholar
  55. Taffon, D. and Battisti, C. 2005. Breeding bird communities and ecotope niche breadth of the species in a heterogeneous landscape of Central Italy. Riv. ital. Ornitol., Research in Ornitology 75:129–139.Google Scholar
  56. ter Braak, C.J.F. and Barendregt, L.G. 1986. Weighted averaging of species indicator values: its effciency in environmental calibration. Math. Biosci. 78:57–72.CrossRefGoogle Scholar
  57. ter Braak, C. J. F. and Schaffers, A.P. 2004. Co-correspondence analysis: a new ordination method to relate two community compositions. Ecology 85:834–846.CrossRefGoogle Scholar
  58. Testi, A., Guidotti, S., Bisceglie, S. and Fanelli, G. 2009. Detecting river environmental quality through plant and macroinvertebrate indicators in the Aniene River (Central Italy). Aquat. Ecol. 43:477–486.CrossRefGoogle Scholar
  59. Villard, M.-A. 1998. On forest-interior species, edge avoidance, area sensitivity, and dogma in avian conservation. Auk 115:801–805.CrossRefGoogle Scholar
  60. Villard, M.-A. and Jonsson, B.G. 2009. Setting Conservation Targets for Managed Forest Landscapes. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  61. Vuerich, V., Bologna, M.A. and Battisti, C. 2006. Comunità ornitiche nidificanti in tre tipologie vegetazionali lungo un gradiente altitudinale nei monti Simbruini (Lazio, Appennini centrali) (Aves). Aldrovandia 2:49–53.Google Scholar
  62. Wiens, J.A. 1989. The Ecology of Bird Communities. Vols. 1–2. Cambridge studies in ecology, Cambridge University Press, Cambridge, UK.Google Scholar
  63. Winter, S. 2012. Forest naturalness assessment as a component of biodiversity monitoring and conservation management. Forestry 85:293–304.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2017

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • C. Battisti
    • 1
    Email author
  • G. Fanelli
    • 2
  • D. Pavel
    • 3
  • L. Redolfi De Zan
    • 4
    • 5
  • S. Rossi de Gasperis
    • 3
  • G. Caneva
    • 3
  1. 1.“Torre Flavia” LTER (Long Term Ecological Research) Station, Servizio Aree protette, Città metropolitana di Roma CapitaleRomeItaly
  2. 2.Laboratorio di Agrobiologia, Dipartimento di BiologiaSeconda Università di Roma Tor VergataRomeItaly
  3. 3.Dipartimento di ScienzeUniversità degli Studi Roma TreRomeItaly
  4. 4.Consiglio per la ricerca in agricoltura e l’analisi dell’economia agrariaCentro di Ricerca per l’Agrobiologia e la Pedologia (CREA-ABP)Cascine del RiccioItaly
  5. 5.Centro Nazionale per lo Studio e la Conservazione della Biodiversità Forestale ‘Bosco Fontana’Marmirolo (MN)Italy

Personalised recommendations