Comparing the accuracy of three non-destructive methods in estimating aboveground plant biomass

Abstract

Aboveground plant biomass is one of the most important features of ecosystems, and it is widely used in ecosystem research. Non-destructive biomass estimation methods provide an important toolkit, because the destructive harvesting method is in many cases not feasible. However, only few studies have compared the accuracy of these methods in grassland communities to date. We studied the accuracy of three widely used methods for estimation of aboveground biomass: the visual cover estimation method, the point intercept method, and field spectroscopy. We applied them in three independent series of field samplings in semi-arid sand grasslands in Central Hungary. For each sampling method, we applied linear regression to assess the strength of the relationship between biomass proxies and actual aboveground biomass, and used coefficient of determination to evaluate accuracy. We found no evidence that the visual cover estimation, which is generally considered as a subjective method, was less accurate than point intercept method or field spectroscopy in estimating biomass. Based on our three datasets, we found that accuracy was lower for the point intercept method compared to the other two methods, while field spectroscopy and visual cover estimation were similar to each other in the semi-arid sand grassland community. We conclude that visual cover estimation can be as accurate for estimating aboveground biomass as other approaches, thus the choice amongst the methods should be based on additional pros and cons associated with each of the method and related to the specific research objective.

Abbreviations

ANPP:

Aboveground Net Primary Productivity

NDVI:

Normalized Differential Vegetation Index

References

  1. Asrar, G., Kanemasu, E.T., Miller, G.P. and Weiser, R.L. 1986. Light interception and leaf area estimates from measurements of grass canopy reflectance. IEEE Trans. Geosci. Remote Sens. GE-24: 76–82.

    Article  Google Scholar 

  2. Bråthen, K.A. and Hagberg, O. 2004. More efficient estimation of plant biomass. J. Veg. Sci. 15: 653–660.

    Article  Google Scholar 

  3. Braun-Blanquet, J. 1932. Plant Sociology. The Study of Plant Communities. McGraw-Hill, New York.

    Google Scholar 

  4. Byrne, K.M., Lauenroth, W.K. and Adler, P.B. 2013. Contrasting effects of precipitation manipulations on production in two sites within the Central Grassland Region, USA. Ecosystems 16: 1039–1051.

    Article  Google Scholar 

  5. Byrne, K.M., Lauenroth, W.K., Adler, P.B. and Byrne, C.M., 2011. Estimating aboveground net primary production in grasslands: A comparison of nondestructive methods. Rangel. Ecol. Manag. 64: 498–505.

    Article  Google Scholar 

  6. Canfield, R.H. 1941. Application of the line interception method in sampling range vegetation. J. For. 39: 388–394.

    Google Scholar 

  7. Catchpole, W.R. and Wheeler, C.J. 1992. Estimating plant biomass: A review of techniques. Aust. J. Ecol. 17: 121–131.

    Article  Google Scholar 

  8. Damgaard, C., Merlin, A., Mesléard, F. and Bonis, A. 2011. The demography of space occupancy: measuring plant colonization and survival probabilities using repeated pin-point measurements. Methods Ecol. Evol. 2: 110–115.

    Article  Google Scholar 

  9. Döbert, T.F., Webber, B.L., Sugau, J.B., Dickinson, K.J.M. and Didham, R.K. 2015. Can leaf area index and biomass be estimated from Braun-Blanquet cover scores in tropical forests? J. Veg. Sci. 26: 1043–1053.

    Article  Google Scholar 

  10. Faraway, J.J. 2005. Linear Models with R. CRC Press, Boca Raton.

    Google Scholar 

  11. Fay, P.A., Blair, J.M., Smith, M.D., Nippert, J.B., Carlisle, J.D. and Knapp, A.K. 2011. Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function. Biogeosciences 8: 3053–3068.

    Article  CAS  Google Scholar 

  12. Filella, I., Peñuelas, J., Llorens, L. and Estiarte, M. 2004. Reflectance assessment of seasonal and annual changes in biomass and CO2 uptake of a Mediterranean shrubland submitted to experimental warming and drought. Remote Sens. Environ. 90: 308–318.

    Article  Google Scholar 

  13. Frank, D.A. and McNaughton, S.J. 1990. Aboveground biomass estimation with the canopy intercept method: A plant growth form caveat. Oikos 57: 57–60.

    Article  Google Scholar 

  14. Gamon, J.A., Field, C.B., Goulden, M.L., Griffin, K.L., Hartley, A.E., Joel, G., Peñuelas, J. and Valentini, R. 1995. Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. Ecol. Appl. 5: 28–41.

    Article  Google Scholar 

  15. Gilgen, A.K. and Buchmann, N. 2009. Response of temperate grasslands at different altitudes to simulated summer drought differed but scaled with annual precipitation. Biogeosciences 6: 2525– 2539.

    Article  Google Scholar 

  16. Godínez-Alvarez, H., Herrick, J.E., Mattocks, M., Toledo, D. and Van Zee, J. 2009. Comparison of three vegetation monitoring methods: Their relative utility for ecological assessment and monitoring. Ecol. Indic. 9: 1001–1008.

    Article  Google Scholar 

  17. Goodall, D. 1952. Some considerations in the use of point quadrats for the analysis of vegetation. Aust. J. Biol. Sci. 5: 1–41.

    Article  CAS  Google Scholar 

  18. Greig-Smith, P. 1983. Quantitative Plant Ecology. University of California Press, Berkeley.

    Google Scholar 

  19. Grime, J.P., Fridley, J.D., Askew, A.P., Thompson, K., Hodgson, J.G. and Bennett, C.R. 2008. Long-term resistance to simulated climate change in an infertile grassland. Proc. Natl. Acad. Sci. 105: 10028–10032.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gu, Y., Wylie, B.K., Howard, D.M., Phuyal, K.P. and Ji, L. 2013. NDVI saturation adjustment: A new approach for improving cropland performance estimates in the Greater Platte River Basin, USA. Ecol. Indic. 30: 1–6.

    Article  Google Scholar 

  21. Hahn, I. and Scheuring, I. 2003. The effect of measurement scales on estimating vegetation cover: a computer-assisted experiment. Community Ecol. 4: 29–33.

    Google Scholar 

  22. Jobbágy, E.G., Sala, O.E. and Paruelo, J.M. 2002. Patterns and controls of primary production in the Patagonian steppe: a remote sensing approach. Ecology 83: 307–319.

    Google Scholar 

  23. Jonasson, S. 1988. Evaluation of the point intercept method for the estimation of plant biomass. Oikos 52: 101–106.

    Article  Google Scholar 

  24. Klimeš, L. 2003. Scale-dependent variation in visual estimates of grassland plant cover. J. Veg. Sci. 14: 815–821.

    Article  Google Scholar 

  25. Knapp, A., Carroll, C.W., Denton, E., La Pierre, K., Collins, S. and Smith, M. 2015. Differential sensitivity to regional-scale drought in six central US grasslands. Oecologia 177: 949–957.

    Article  Google Scholar 

  26. Kongstad, J., Schmidt, I.K., Riis-Nielsen, T., Arndal, M.F., Mikkelsen, T.N. and Beier, C. 2012. High resilience in heathland plants to changes in temperature, drought, and CO2 in combination: Results from the CLIMAITE experiment. Ecosystems 15: 269–283.

    Article  CAS  Google Scholar 

  27. Kovács-Láng, E., Kröel-Dulay, G., Kertész, M., Fekete, G., Mika, J., Dobi-Wantuch, I., Rédei, T., Rajkai, K., Hahn, I. and Bartha, S. 2000. Changes in the composition of sand grasslands along a climatic gradient in Hungary and implications for climate change. Phytocoenologia 30: 385–408.

    Article  Google Scholar 

  28. Kovács-Láng, E., Molnár, E., Kröel-Dulay, G. and Barabás, S. 2008. The KISKUN LTER: Long-term ecological research in the Kiskunság, Hungary. Institute of Ecology and Botany, Hungarian Academy of Sciences, Vácrátót.

    Google Scholar 

  29. Kröel-Dulay, G., Ransijn, J., Schmidt, I.K., Beier, C., De Angelis, P., de Dato, G., Dukes, J.S., Emmett, B., Estiarte, M., Garadnai, J., Kongstad, J., Kovács-Láng, E., Larsen, K.S., Liberati, D., Ogaya, R., Riis-Nielsen, T., Smith, A.R., Sowerby, A., Tietema, A. and Penuelas, J. 2015. Increased sensitivity to climate change in disturbed ecosystems. Nat. Commun. 6: 6682 doi:10.1038/ ncomms7682.

    Article  CAS  Google Scholar 

  30. Milton, E.J., Schaepman, M.E., Anderson, K., Kneubühler, M. and Fox, N. 2009. Progress in field spectroscopy. Remote Sens. Environ., Imaging Spectroscopy Special Issue 113, Supplement 1: S92–S109.

    Article  Google Scholar 

  31. Molnár, Z. 2003. Sanddunes in Hungary (Kiskunság). TermészetBÚVÁR Alapítvány Kiadó, Budapest.

    Google Scholar 

  32. Nemani, R.R., Keeling, C.D., Hashimoto, H., Jolly, W.M., Piper, S.C., Tucker, C.J., Myneni, R.B. and Running, S.W. 2003. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300: 1560–1563.

    Article  CAS  Google Scholar 

  33. Paruelo, J.M., Epstein, H.E., Lauenroth, W.K. and Burke, I.C. 1997. ANPP estimates from NDVI for the Central Grassland Region of the United States. Ecology 78: 953–958.

    Article  Google Scholar 

  34. Pearson, R.L., Miller, L.D. and Tucker, C.J. 1976. Hand-held spectral radiometer to estimate gramineous biomass. Appl. Opt. 15: 416–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Peet, R.K., Wentworth, T.R. and White, P.S. 1998. A flexible, multipurpose method for recording vegetation composition and structure. Castanea 63: 262–274.

    Google Scholar 

  36. Peñuelas, J., Prieto, P., Beier, C., Cesaraccio, C., De ANGELIS, P., De DATO, G., Emmett, B.A., Estiarte, M., Garadnai, J., Gorissen, A., Láng, E.K., Kröel-Dulay, G., Llorens, L., Pellizzaro, G., Riis-Nielsen, T., Schmidt, I.K., Sirca, C., Sowerby, A., Spano, D. and Tietema, A. 2007. Response of plant species richness and primary productivity in shrublands along a north–south gradient in Europe to seven years of experimental warming and drought: reductions in primary productivity in the heat and drought year of 2003. Glob. Change Biol. 13: 2563–2581.

    Article  Google Scholar 

  37. R Core Team, 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

  38. Redjadj, C., Duparc, A., Lavorel, S., Grigulis, K., Bonenfant, C., Maillard, D., Saïd, S. and Loison, A. 2012. Estimating herbaceous plant biomass in mountain grasslands: a comparative study using three different methods. Alp. Bot. 122: 57–63.

    Article  Google Scholar 

  39. Röttgermann, M., Steinlein, T., Beyschlag, W. and Dietz, H. 2000. Linear relationships between aboveground biomass and plant cover in low open herbaceous vegetation. J. Veg. Sci. 11: 145– 148.

    Article  Google Scholar 

  40. Roujean, J.-L. and Breon, F.-M. 1995. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 51: 375–384.

    Article  Google Scholar 

  41. Rouse, J.W., Haas, R.H., Deering, D.W., Schell, J.A. and Harlan, J.C. 1974. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. NASA/GSFCT Type III Final Report, Greenbelt, MD, USA.

    Google Scholar 

  42. Sala, O.E. and Austin, A.T. 2000. Methods of estimating above-ground net primary productivity. In: Sala, O.E., Jackson, R.B., Mooney, H.A. and Howarth, R.W. (eds.), Methods in Ecosystem Science. Springer New York, pp. 31–43.

    Chapter  Google Scholar 

  43. Sala, O.E., Parton, W.J., Joyce, L.A. and Lauenroth, W.K. 1988. Primary production of the Central Grassland Region of the United States. Ecology 69: 40–45.

    Article  Google Scholar 

  44. Scurlock, J.M.O., Johnson, K. and Olson, R.J. 2002. Estimating net primary productivity from grassland biomass dynamics measurements. Glob. Change Biol. 8: 736–753.

    Article  Google Scholar 

  45. Sykes, J.M., Horrill, A.D. and Mountford, M.D. 1983. Use of visual cover assessments as quantitative estimators of some British woodland taxa. J. Ecol. 71: 437–450.

    Article  Google Scholar 

  46. The Plant List, 2010. Version 1. Published on the Internet; http://www.theplantlist.org/ (accessed 1st January).

  47. Tucker, C.J. and Sellers, P.J. 1986. Satellite remote sensing of primary production. Int. J. Remote Sens. 7: 1395–1416.

    Article  Google Scholar 

  48. Whitbeck, M. and Grace, J.B. 2006. Evaluation of non-destructive methods for estimating biomass in marshes of the upper Texas, USA coast. Wetlands 26: 278–282.

    Article  Google Scholar 

  49. Wilson, J.B. 2011. Cover plus: ways of measuring plant canopies and the terms used for them. J. Veg. Sci. 22: 197–206.

    Article  Google Scholar 

  50. Wintle, B.C., Fidler, F., Vesk, P.A., L. Moore, J. 2013. Improving visual estimation through active feedback. Methods Ecol. Evol. 4: 53–62.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Ónodi.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ónodi, G., Kröel-Dulay, G., Kovács-Láng, E. et al. Comparing the accuracy of three non-destructive methods in estimating aboveground plant biomass. COMMUNITY ECOLOGY 18, 56–62 (2017). https://doi.org/10.1556/168.2017.18.1.7

Download citation

Keywords

  • Biomass proxies
  • Coefficient of determination
  • Field experiment
  • Field spectroscopy
  • Point intercept method
  • Semi-arid grassland
  • Visual cover estimation

Nomenclature

  • The Plant List (2010)