Advertisement

Community Ecology

, Volume 18, Issue 1, pp 47–55 | Cite as

How seasonality and anthropogenic impacts can modulate the structure of aquatic benthic invertebrate assemblages

  • V. S. UiedaEmail author
  • M. L. B. Iwai
  • E. R. Ono
  • A. L. U. Melo
  • M. I. B. Alves
Article
  • 1 Downloads

Abstract

We studied a benthic invertebrate assemblage of a stream that passes through pristine, rural, suburban and urban areas of a municipality located in southeastern Brazil to investigate a possible relationship between this assemblage structure and urbanization. The environmental variables and fauna structure were analyzed in a spatial and temporal scale, sampling the four sites in a dry and wet season. We found a clear spatial pattern, with higher similarity between sites from rural and suburban area that presented intermediate environmental characteristics. The pristine site showed in both seasons the lowest values of alkalinity and fecal coliform. On the other hand, the site located in the urban area showed the lowest concentration of dissolved oxygen and higher of suspended solids, ammonia and fecal coliform. The extreme values of these three variables occurred in the wet season, probably related to the high rainfall values. The benthic invertebrate fauna structure followed the same longitudinal and seasonal pattern found for the environmental variables. The site in urban area showed the lowest richness, diversity and evenness, with a dominance of two groups resistant to adverse environmental conditions (Oligochaeta and Orthocladiinae) and absence of more sensitive groups (Coleoptera, Ephemeroptera and Trichoptera). The increase drag of the substrate and associated invertebrates can be responsible for the lower abundance and richness observed in the wet season. The environmental variables that best defined the differentiation between sites (dissolved oxygen, organic suspended solids and fecal coliform) related directly to urbanization effects, like dump effluents and removal of riparian vegetation.

Keywords

Aquatic insects Brazilian stream Environmental degradation Urbanization 

Abbreviations

acar

Acarina

amer

Americabaetis

ANOSIM

ANalysis Of SIMilarity

Anne

Annelida

argi

Argia

baet

Baetodes

came

Camelobaetidius

Chel

Chelicerata

chir

Chironominae

clad

Cladocera

Cnid

Cnidaria

Cole

Coleoptera

Coll

Collembola

cope

Copepoda

Crus

Crustacea

Dipt

Diptera

Ephe

Ephemeroptera

hage

Hagenulopsis

hete

Heterelmis

Hete

Heteroptera

Hexa

Hexapoda

hiru

Hirudinea

macr

Macrelmis

Mega

Megaloptera

metri

Metrichia

Moll

Mollusca

Nema

Nematoda

Neme

Nemertea

neoe

Neoelmis

neot

Neotrichia

NMDS

Non-metric Multi-Dimensional Scaling

Odon

Odonata

olig

Oligochaeta

orto

Orthocladiinae

OTU

Operational Taxonomic Unit

Plat

Plathyhelminthes

Plec

Plecoptera

psep

Psephenus

SIMPER

SIMilarity PERcentages

simu

Simuliidae

smic

Smicridea

tany

Tanypodinae

thra

Thraulodes

trav

Traverhyphes

Tric

Trichoptera

worm

Wormaldia

Nomenclature

Domínguez and Fernandez (2009) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42974_2017_1801047_MOESM1_ESM.pdf (10 kb)
Supplementary material, approximately 10 KB.
42974_2017_1801047_MOESM2_ESM.pdf (37 kb)
Supplementary material, approximately 38 KB.

References

  1. Agostinho, A.A., S. Thomaz and L.C. Gomes. 2005. Conservation of the biodiversity of Brazil´s inland waters. Conserv. Biol. 19(3): 646–652.CrossRefGoogle Scholar
  2. Allan, J.D. 1995. Stream Ecology: Structure and Function of Running Waters. Chapman and Hall, London.CrossRefGoogle Scholar
  3. Azrina, M.Z., C.K. Yap, A. Rahim, A. Ismail and S.G. Tan. 2006. Anthropogenic impacts on the distribution and biodiversity of benthic macroinvertebrates and water quality of the Langat River, Peninsular Malaysia. Ecotox. Environ. Safe. 64(3): 337– 347.CrossRefGoogle Scholar
  4. Barrella, W., M. Petrere-Jr, W.S. Smith and L.F.A. Montag. 2001. As Relações entre as Matas ciliares, os rios e os peixes. In: R.R. Rodrigues and H.F. Leitão Filho (eds.), Matas ciliares: conservação e recuperação. EDUSP, São Paulo. pp. 187–207.Google Scholar
  5. Bispo, P.C., L.G. Oliveira, L.M. Bini and K.G. Sousa. 2006. Ephemeroptera, Plecoptera and Trichoptera assemblages from riffles in mountain streams of central Brazil: environmental factors influencing the distribution and abundance of immatures. Braz. J. Biol. 66(2): 611–622.CrossRefGoogle Scholar
  6. Brasil. Resolução CONAMA n. 274. Diário Oficial da União (published on January 25, 2001).Google Scholar
  7. Buss, D.F., D.F. Baptista and J.L. Nessimian. 2003. Bases conceituais para a aplicação de biomonitoramento em programas de avaliação da qualidade da água de rios. Caderno Saúde Pública. 19(2): 465–473.CrossRefGoogle Scholar
  8. Callisto, M., M. Moretti and M. Goulart. 2001. Macroinvertebrados bentônicos como ferramenta para avaliar a saúde de riachos. Ver. Bras. Recursos Hídricos 6: 71–82.CrossRefGoogle Scholar
  9. Carpenter, S.R., E.H. Stanley and M.J.V. Zanden. 2011. State of the world’s freshwater ecosystems: physical, chemical, and biological changes. Annu. Rev. Env. Resources. 36: 75–99.CrossRefGoogle Scholar
  10. Clarke, K.R. and R.M. Gorley. 2006. Primer v6: User manual/tutorial. Primer-E: Plymouth.Google Scholar
  11. CETESB - Companhia Ambiental do Estado de São Paulo. 2013. Qualidade das águas interiores no Estado de São Paulo. Apêndice D - Significado ambiental e sanitário das variáveis de qualidade. São Paulo: Série Relatórios. Accessed in: http://www.cetesb.sp.gov.br.
  12. Cortezzi, S.S., P.C. Bispo, G.P. Paciencia and R.C. Leite. 2009. Influência da ação antrópica sobre a fauna de macroinvertebrados aquáticos em riachos de uma região de cerrado do sudoeste do Estado de São Paulo. Iheringia, Série Zoologia 99: 36–43.CrossRefGoogle Scholar
  13. Cunha, D.G.F., W.K. Dodds and M.C. Calijuri. 2011. Defining nutrient and biochemical oxygen demand baselines for tropical rivers and streams in São Paulo State (Brazil): a comparison between reference and impacted sites. Environ. Manage. 48: 945–956.CrossRefGoogle Scholar
  14. Domínguez, E. and H.R. Fernández. 2009. Macroinvertebrados bentônicos sudamericanos: sistemática y biologia. Fundación Miguel Lillo, Tucumán.Google Scholar
  15. Golterman, H.L., R.S. Clymo and M.A.M. Ohnstad. 1978. Methods for Physical and Chemical Analysis of Freshwater. Scientific Publications, Oxford.Google Scholar
  16. Gomi, T., R.C. Sidle, S. Noguchi, J.N. Negishi, A.R. Nik and S. Sasaki. 2006. Sediment and wood accumulations in humid tropical headwater streams: effects of logging and riparian buffers. Forest Ecol. Manag. 224: 166–175.CrossRefGoogle Scholar
  17. Goulart, M. and M. Callisto. 2003. Bioindicadores de qualidade de água como ferramenta em estudos de impacto ambiental. Revista da FAPAM. 2: 1–9.Google Scholar
  18. Hepp, L.U., R.M. Restello, S.V. Milesi, C. Biasi and J. Molozzi. 2013. Distribution of aquatic insects in urban headwater streams. Acta Limnol. Bras. 25: 1–9.CrossRefGoogle Scholar
  19. Hope, A.C.A. 1968. A simplified Monte Carlo significance test procedure. J. R. Stat. Soc. 30: 582–598.Google Scholar
  20. Iliopoulou-Georgudaki, J., V. Kantzaris, P. Katharios, P. Kaspiris, T. Georgiadis and B. Montesantou. 2003. An application of different bioindicators for assessing water quality: a case study in the rivers Alfeios and Pineios (Peloponnisos, Greece). Ecol. Indic. 2(4): 345–360.CrossRefGoogle Scholar
  21. Kikuchi, R.M. and V.S. Uieda. 2005. Composição e distribuição dos macroinvertebrados em diferentes substratos de fundo de um riacho no município de Itatinga, São Paulo, Brasil. Entomol. Vect. 12(2): 193–231.CrossRefGoogle Scholar
  22. Leopoldo, P.R. and A.P. Sousa. 1979. Hidrometria. FCA, UNESP, São Paulo.Google Scholar
  23. Lopretto, E.C. and G. Tell. 1995. Ecossistemas de aguas continentales: metodologias para su studio. Tomo III, Ed. Sur, Argentina.Google Scholar
  24. Melo, A.S. and C.G. Froehlich. 2001. Macroinvertebrates in neotropical streams: richness patterns along a catchment and assemblage structure between two seasons. J. N. Am. Benthol. Soc. 20: 1–16.CrossRefGoogle Scholar
  25. Merritt, R.W and K.W. Cummins. 1996. An Introduction to the Aquatic Insects of North America. Kendall/Hunt, Dubuque.Google Scholar
  26. Mesa, L.M., H.R. Fernández and M.V. Manzo. 2009. Seasonal patterns of benthic arthropods in a subtropical Andean basin. Limnologica 39(2): 152–162.CrossRefGoogle Scholar
  27. Moore, A.A. and M.A. Palmer. 2005. Invertebrate biodiversity in agricultural and urban headwater streams: implications for conservation and management. Ecol. Appl. 15(4): 1169–1177.CrossRefGoogle Scholar
  28. Oliveira, P.C.R., M.G. Nogueira and L.P. Sartori. 2014. Differential environmental impacts on small and medium size rivers from center of São Paulo State, Brazil, and regional management perspectives. Acta Limnol. Bras. 26(4): 404–419.CrossRefGoogle Scholar
  29. Pennak, R.W. 1978. Freshwater Invertebrates of the United States. John Wiley & Sons, New York.Google Scholar
  30. Ríos-Touma, B., A.C. Encalada and N. Prat Fornells. 2011. Macroinvertebrates assemblages of an Andean high-altitude tropical stream: the importance of season and flow. Int. Rev. Hydrobiol. 96(6): 667–685.CrossRefGoogle Scholar
  31. Schwoerbel, J. 1975. Métodos de hidrobiologia. H. Blume ediciones, Madrid.Google Scholar
  32. Souto, R.M.G., K.G. Facure, L.A. Pavanin and G.B. Jacobucci. 2011. Influence of environmental factors on benthic macroinvertebrate communities of urban streams in Vereda habitats, Central Brazil. Acta Limnol. Bras. 23(3): 293–306.CrossRefGoogle Scholar
  33. Tonon, L.A.C., I.G. Branco, G.G. Pieretti, V.J. Seloin, R. Bergamasco, G.S. Madrona, M.M. Moura and M.R.S. Scapim. 2013. Análise de Parâmetros de qualidade da água para consumo humano. Rev. Tecnol. 22: 35–41.Google Scholar
  34. Uieda, V.S. and I.C.S.M. Gajardo. 1996. Macroinvertebrados perifíticos encontrados em poções e corredeiras de um riacho. Naturalia, São Paulo 21: 31–47.Google Scholar
  35. Vasconcelos, M.C. and A.S. Melo. 2008. An experimental test of the effects of inorganic sediment addition on benthic macroinvertebrates of a subtropical stream. Hydrobiologia 610: 321–329.CrossRefGoogle Scholar
  36. Watzen, K.M. 2006. Physical pollution: effects of gully erosion on benthic invertebrates in a tropical clear-water stream. Aquat. Conserv. 16(7): 733–749.CrossRefGoogle Scholar
  37. Yokoyama, E., G.P. Paciencia, P.C. Bispo, L.G. Oliveira and P.C. Bispo. 2012. A sazonalidade ambiental afeta a composição faunística de Ephemeroptera e Trichoptera em um riacho de Cerrado do Sudeste do Brasil? Ambiência 8: 73–84.CrossRefGoogle Scholar
  38. Yule, C.M., J.Y. Gan, T. Jinggut and K.V. Lee. 2015. Urbanization affects food webs and leaf-litter decomposition in a tropical stream in Malaysia. Freshwater Sci. 34(2): 702–715.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2017

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • V. S. Uieda
    • 1
    Email author
  • M. L. B. Iwai
    • 1
  • E. R. Ono
    • 1
  • A. L. U. Melo
    • 1
  • M. I. B. Alves
    • 1
  1. 1.Department of ZoologyUnesp — Univ Estadual PaulistaBotucatuBrazil

Personalised recommendations