Advertisement

Community Ecology

, Volume 18, Issue 1, pp 21–30 | Cite as

Patterns of plant species composition in mesic woodlands are related to a naturally occurring depth-to-groundwater gradient

  • M. C. Hingee
  • D. Eamus
  • D. W. Krix
  • S. Zolfaghar
  • B. R. MurrayEmail author
Article

Abstract

Groundwater-dependent ecosystems (GDEs) are threatened by over-extraction of groundwater for human needs across the world. A fundamental understanding of relationships between naturally occurring gradients in depth-to-groundwater (DGW) across landscapes and the ecological properties of vegetation assemblages is essential for effective management of the impacts of groundwater extraction. Little is known, however, about relationships between DGW and the ecology of mesic woodlands in GDEs. Here, we investigated relationships between a naturally occurring DGW gradient and plant species composition, richness and abundance in mesic Eucalyptus woodlands of eastern Australia. Across 16 sites varying in DGW from 2.4 m to 43.7 m, we found that plant species composition varied significantly in relation to DGW, independently of a range of 14 physical and chemical attributes of the environment. Nine understorey species, representing only 7% of the pool of 131 plant species, were identified as contributing to up to 50% of variation in species composition among the study sites. We suggest this dominant pattern driver in the understorey is explained by differential abilities among understorey species in their ability either to tolerate extended dry conditions at deeper DGW sites during periods of low rainfall, or to withstand periodically waterlogged conditions at shallow sites. Plant species richness and total plant abundance (a measure of plant productivity) were not significantly and independently related to DGW or any of the other 14 environmental attributes. Our finding for a direct relationship between DGW and plant species composition provides important reference information on the ecological condition of these mesic woodlands in the absence of groundwater extraction. Such information is vital for setting ecological thresholds that ensure sustainable extraction of groundwater.

Keywords

Abundance Environmental attributes Groundwater-dependent ecosystem Groundwater extraction Species richness 

Abbreviations

DGW

Depth-to-GroundWater

GDE

Groundwater-Dependent Ecosystem

HSSGW

Highlands Sandstone Scribbly Gum Woodlands

HSTOF

Highlands Shale Tall Open Forests

NESW

Nepean Enriched Sandstone Woodlands

SCA

Sydney Catchment Authority

Nomenclature

PlantNET (The NSW Plant Information Network System). Royal Botanic Gardens and Domain Trust, Sydney. http://plantnet.rbgsyd.nsw.gov.au 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42974_2017_1801021_MOESM1_ESM.pdf (81 kb)
Supplementary material, approximately 83 KB.

References

  1. Ahmad, N.M., P.M. Martin and J.M. Vella. 2009. Floral structure and development in the dioecious australian endemic Lomandra longifolia (Lomandraceae). Austr. J. Bot. 56: 666–683.CrossRefGoogle Scholar
  2. ANBG. 2012. Australian National Botanic Gardens. Vol. 2014, Australian Commonwealth, Canberra.Google Scholar
  3. Benyon, R.G., S. Theiveyanathan and T.M. Doody. 2006. Impacts of tree plantations on groundwater in south-eastern Australia. Austr. J. Bot. 54: 181–192.CrossRefGoogle Scholar
  4. Bolker, B.M., M.E. Brooks, C.J. Clark, S.W. Geange, J.R. Poulsen, M.H.H. Stevens and J.S. White. 2009. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 24: 127–135.PubMedPubMedCentralGoogle Scholar
  5. Brodersen, C.R. and A.J. McElrone. 2013. Maintenance of xylem network transport capacity: a review of embolism repair in vascular plants. Frontiers Plant Sci. 4: 108.CrossRefGoogle Scholar
  6. Brown, J., L. Bach, A. Aldous, A. Wyers and J. DeGagné. 2011. Groundwater-dependent ecosystems in Oregon: an assessment of their distribution and associated threats. Frontiers Ecol. Environ. 9: 97–102.CrossRefGoogle Scholar
  7. Canadell, J., R. Jackson, J. Ehleringer, H. Mooney, O. Sala and E.D. Schulze. 1996. Maximum rooting depth of vegetation types at the global scale. Oecologia 108: 583–595.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cartledge, O. and J. Carnahan. 1971. Studies of Austral bracken (Pteridium esculentum) in the vicinity of Canberra. New Phytol. 70: 619–626.CrossRefGoogle Scholar
  9. Chen, Y., H. Zilliacus, W.H. Li, H.F. Zhang and Y.P. Chen. 2006. Ground-water level affects plant species diversity along the lower reaches of the Tarim river, western China. J. Arid Environ. 66: 231–246.CrossRefGoogle Scholar
  10. Clarke, K.R. 1993. Non-parametric multivariate analyses of changes in community structure. Austr. J. Ecol. 18: 117–143.CrossRefGoogle Scholar
  11. Cook, P.G., T.J. Hatton, D. Pidsley, A.L. Herczeg, A. Held, A. O’Grady and D. Eamus. 1998. Water balance of a tropical woodland ecosystem, northern Australia: a combination of micro-meteorological, soil physical and groundwater chemical approaches. J. Hydrol. 210: 161–177.CrossRefGoogle Scholar
  12. Crawley, M.J. 2007. The R Book. John Wiley & Sons Ltd, London.CrossRefGoogle Scholar
  13. Critchley, C., B. Chambers, J. Fowbert, R. Sanderson, A. Bhogal and S. Rose. 2002. Association between lowland grassland plant communities and soil properties. Biol. Conserv. 105: 199–215.CrossRefGoogle Scholar
  14. Eamus, D., T. Haton, P. Cook and C. Colvin. 2006a. Ecohydrology: Vegetation Function, Water and Resource Management. CSIRO Publishing, Melbourne.CrossRefGoogle Scholar
  15. Eamus, D., R. Froend, R. Loomes, G. Hose and B. Murray (2006b) A functional methodology for determining the groundwater regime needed to maintain the health of groundwater-dependent vegetation. Austr. J. Bot. 54: 97–114.CrossRefGoogle Scholar
  16. Eamus, D., S. Zolfaghar, R. Villalobos-Vega, J. Cleverly and A. Huete (2015) Groundwater-dependent ecosystems: recent insights from satellite and field-based studies. Hydrol. Earth Syst. Sci. 19: 4229–4256.CrossRefGoogle Scholar
  17. Eamus, D., A. Huete and Q. Yu (2016) Vegetation Dynamics: A Synthesis of Plant Ecophysiology, Remote Sensing and Modelling. Cambridge University Press, New York.Google Scholar
  18. Elmore, A.J., S.J. Manning, J.F. Mustard, J.M. Craine. 2006. Decline in alkali meadow vegetation cover in California: the effects of groundwater extraction and drought. J. Appl. Ecol. 43: 770–779.CrossRefGoogle Scholar
  19. Elmore, A.J., J.F. Mustard and S.J. Manning. 2003. Regional patterns of plant community response to changes in water: Owens Valley, California. Ecol. Appl. 13: 443–460.CrossRefGoogle Scholar
  20. Groom, P.K., R.H. Froend and E.M. Mattiske. 2000. Impact of groundwater abstraction on a Banksia woodland, Swan Coastal Plain, Western Australia. Ecol. Manage. Restor. 1: 117–124.CrossRefGoogle Scholar
  21. Halpern, C.B. and T.A. Spies. 1995. Plant species diversity in natural and managed forests of the pacific northwest. Ecol. Appl. 5: 913–934.CrossRefGoogle Scholar
  22. Hatton, T. and R. Evans. 1998. Dependence of Ecosystems on Groundwater and its Significance to Australia. Land and Water Resources Research and Development Corporation, Canberra.Google Scholar
  23. Hillel, D. 1971. Soil and Water: Physical Principles and Processes. Academic Press, New YorkGoogle Scholar
  24. Jakeman, A.J., O. Barreteau, R.J. Hunt, J-D Rinaudo and A. Ross. 2016. Integrated Groundwater Management: Concepts, Approaches and Challenges. Springer International Publishing AG, Cham, Switzerland.CrossRefGoogle Scholar
  25. Jones, J.B. 2001. Laboratory Guide for Conducting Soil Tests and Plant Analysis. CRC Press, Boca Raton, Florida.CrossRefGoogle Scholar
  26. Kløve, B., P. Ala-Aho, G. Bertrand, J.J. Gurdak, H. Kupfersberger, J. Kværner, T. Muotka, H. Mykrä, E. Preda, P. Rossi, C.B. Uvo, E. Velasco and M. Pulido-Velazquez. 2014. Climate change impacts on groundwater and dependent ecosystems. J. Hydrol. 518 Part B: 250–266.CrossRefGoogle Scholar
  27. Kodela, P. 1990. Pollen-tree relationships within forests of the Robertson-Moss Vale region, New South Wales, Australia. Rev. Palaeobot. Palynol. 64: 273–279.CrossRefGoogle Scholar
  28. Konikow, L.F. and E. Kendy. 2005. Groundwater depletion: a global problem. Hydrogeol. J. 13: 317–320.CrossRefGoogle Scholar
  29. Krishnamurty, K.V., E. Shpirt and M.M. Reddy. 1976. Trace metal extraction of soils and sediments by nitric acid -hydrogen peroxide. Atomic Absorption Newsletter 15: 67–80.Google Scholar
  30. Legendre, P. and E.D. Gallagher. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Marini, L., M. Scotton, S. Klimek, J. Isselstein and A. Pecile. 2007. Effects of local factors on plant species richness and composition of alpine meadows. Agriculture, Ecosystems & Environment 119: 281–288.CrossRefGoogle Scholar
  32. McCullagh, P. and J.A. Nelder. 1989. Generalized Linear Models. Second edition. Chapman and Hall, London.CrossRefGoogle Scholar
  33. McGlone, M.S., J.M. Wilmshurst and H.M Leach. 2005. An ecological and historical review of bracken (Pteridium esculentum) in New Zealand, and its cultural significance. New Zealand J. Ecol. 29: 165–184.Google Scholar
  34. Mendes, M.P, L. Ribeiro, T.S. David and A. Costa. 2016. How dependent are cork oak (Quercus suber L.) woodlands on groundwater? A case study in southwestern Portugal. Forest Ecol. Manage. 378: 122–130.CrossRefGoogle Scholar
  35. Murray, B.R., M.J.B. Zeppel, G.C. Hose and D. Eamus. 2003. Groundwater-dependent ecosystems in Australia: it’s more than just water for rivers. Ecol. Manage. Restor. 4:110–113.CrossRefGoogle Scholar
  36. Murray, B.R., G.C. Hose, D. Eamus and D. Licari. 2006. Valuation of groundwater-dependent ecosystems: a functional methodology incorporating ecosystem services. Austr. J. Bot.54: 221–229.CrossRefGoogle Scholar
  37. Naumburg, E., R. Mata-gonzalez, R.G. Hunter, T. Mclendon and D.W. Martin. 2005. Phreatophytic vegetation and groundwater fluctuations: A review of current research and application of ecosystem response modeling with an emphasis on great basin vegetation. Environ. Manage. 35: 726–740.CrossRefGoogle Scholar
  38. Nevill, J.C., P.J. Hancock, B.R. Murray, W.F. Ponder, W.F. Humphreys, M.L. Phillips and P.K. Groom. 2010. Groundwater-dependent ecosystems and the dangers of groundwater overdraft: a review and an Australian perspective. Pacific Conserv. Biol. 16: 187–208.CrossRefGoogle Scholar
  39. NPWS. 2003. The Native Vegetation of the Woronora, O’Hares and Metropolitan Catchments. NSW National Parks and Wildlife Service, Hurstville.Google Scholar
  40. O’Grady, A.P., J.L. Carter and K. Holland. 2010. Review of Australian Groundwater Discharge Studies of Terrestrial Systems. CSIRO: Water for a Healthy Country National Research Flagship. CSIRO, Melbourne.Google Scholar
  41. Oksanen, J., G. Blanchet, R. Kindt, P. Legendre, P. Minchin, R.B. O’Hara, G. Simpson, P. Solymos, H. Stevens and H. Wagner. 2015. Vegan: Community Ecology Package. R package version 2.3-5. http://CRAN.R-project.org/package=vegan
  42. Pérez-Harguindeguy, N., S. Díaz, E. Garnier, S. Lavorel, H. Poorter, P. Jaureguiberry, M.S. Bret-Harte, W.K. Cornwell, J.M. Craine, D.E. Gurvich, C. Urcelay, E.J. Veneklaas, P.B. Reich, L. Poorter, I.J. Wright, P. Ray, L. Enrico, J.G. Pausas, A.C. de Vos, N. Buchmann, G. Funes, F. Quétier, J.G. Hodgson, K. Thompson, H.D. Morgan, H. ter Steege, M.G.A van der Heijden, L. Sack, B. Blonder, P. Poschlod, M.V. Vaieretti, G. Conti, A.C. Staver, S. Aquino and J.H.C. Cornelissen. 2013. New handbook for standardised measurement of plant functional traits worldwide. Austr. J. Bot. 61: 167–234.CrossRefGoogle Scholar
  43. Pitman, J.I. 1989. Rainfall interception by bracken in open habitats— relations between leaf area, canopy storage and drainage rate. J. Hydrol. 105: 317–334.CrossRefGoogle Scholar
  44. Polglase, P. and R.G. Benyon. 2009. The Impacts of Plantations and Native Forests on Water Security: Review and Scientific Assessment of Regional Issues and Research Needs. Forest and Wood Products Australia, Melbourne.Google Scholar
  45. Quinn, G.P. and M.J. Keough. 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge.Google Scholar
  46. R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://ww.R-project.org/
  47. Ross, J.B. 2014. Groundwater resource potential of the Triassic Sandstones of the Southern Sydney Basin: an improved understanding. Austral. J. Earth Sci. 61: 463–474.CrossRefGoogle Scholar
  48. Scheffer, M., S. Carpenter, J.A. Foley, C. Folke and B. Walker. 2001. Catastrophic shifts in ecosystems. Nature 413: 591–596.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Sivertsen, D. 2009. Native Vegetation Interim Type Standard. Department of Environment Climate Change and Water, Sydney.Google Scholar
  50. Smith, R. 1985. Opportunistic behaviour of bracken (Pteridium aquilinum l. Kuhn) in moorland habitats: origins and constraints. In: R. Smith and J. Taylor (eds.), Bracken: Ecology, Land Use and Control Technology. Parthenon Press, Leeds, pp. 215–224.Google Scholar
  51. Sommer, B. and R.H. Froend. 2014. Phreatophytic vegetation responses to groundwater depth in a drying Mediterranean-type landscape. J. Veg. Sci. 25: 1045–1055.CrossRefGoogle Scholar
  52. Specht, A. and R.L. Specht. 1993. Species richness and canopy productivity of Australian plant communities. Biodivers. Conserv. 2: 152–167.CrossRefGoogle Scholar
  53. Stevens, C., C. Dupre, C. Gaudnik, E. Dorland, N. Dise, D. Gowing, A. Bleeker, D. Alard, R. Bobbink and D. Fowler. 2011. Changes in species composition of European acid grasslands observed along a gradient of nitrogen deposition. J. Veg. Sci. 22: 207–215.CrossRefGoogle Scholar
  54. Stromberg, J.C., R. Tiller and B. Richter. 1996. Effects of groundwater decline on riparian vegetation of semiarid regions: the San Pedro, Arizona. Ecol. Appl. 6: 113–131.CrossRefGoogle Scholar
  55. ter Braak, C.J.F. 1987. The analysis of vegetation-environment relationships by canonical correspondence analysis. Plant Ecol. 69: 69–77.CrossRefGoogle Scholar
  56. Thomson, J.A. 2000. Morphological and genomic diversity in the genus Pteridium (Dennstaedtiaceae). Ann. Bot. 85: 77–99.CrossRefGoogle Scholar
  57. Thorne, R.S.J., W.P. Williams and Y. Cao. 1999. The influence of data transformations on biological monitoring studies using macroin-vertebrates. Water Res. 33: 343–350.CrossRefGoogle Scholar
  58. van de Koppel, J., M. Rietkerk, F. van Langevelde, L. Kumar, C.A. Klausmeier, J.M. Fryxell, J.W. Hearne, J. van Andel, N. de Ridder and A. Skidmore. 2002. Spatial heterogeneity and irreversible vegetation change in semiarid grazing systems. Amer. Nat. 159: 209–218.CrossRefGoogle Scholar
  59. Wada, Y., L.P.H. van Beek, C.M. van Kempen, J.W.T.M. Reckman, S. Vasak and M.F.P. Bierkens. 2010. Global depletion of groundwater resources. Geophys. Res. Lett. 37: L20402.CrossRefGoogle Scholar
  60. Wickham, H. 2009. ggplot2: Elegant Graphics for Data Analysis. Springer Science & Business Media, London.CrossRefGoogle Scholar
  61. Williams, P. 1992. Ecology of the endangered herb Scutellaria novaezelandiae. New Zealand J. Ecol. 16: 127–127.Google Scholar
  62. Zhu, J., J. Yu, P. Wang, Q. Yu and D. Eamus. 2013. Distribution patterns of groundwater-dependent vegetation species diversity and their relationship to groundwater attributes in northwestern china. Ecohydrology 6:191–200.CrossRefGoogle Scholar
  63. Zolfagher, S. (2013) Comparative Ecohysiology of Eucalyptus woodlands along a Depth-To-Groundwater Gradient. PhD thesis, University of Technology Sydney.Google Scholar
  64. Zolfaghar, S., R. Villalobos-Vega, J. Cleverly, M. Zeppel, R. Rumman and D. Eamus. 2014. The influence of depth-to-groundwater on structure and productivity of Eucalyptus woodlands. Austr. J. Bot. 62: 428–437CrossRefGoogle Scholar
  65. Zolfaghar, S., R. Villalobos-Vega, J. Cleverly and D. Eamus. 2015. Co-ordination among leaf water relations and xylem vulnerability to embolism of Eucalyptus trees growing along a depth-to-groundwater gradient. Tree Physiol. 35: 732–743.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2017

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • M. C. Hingee
    • 1
  • D. Eamus
    • 1
  • D. W. Krix
    • 1
  • S. Zolfaghar
    • 1
  • B. R. Murray
    • 1
    Email author
  1. 1.School of Life SciencesUniversity of Technology SydneyAustralia

Personalised recommendations