Patterns of plant species composition in mesic woodlands are related to a naturally occurring depth-to-groundwater gradient

Abstract

Groundwater-dependent ecosystems (GDEs) are threatened by over-extraction of groundwater for human needs across the world. A fundamental understanding of relationships between naturally occurring gradients in depth-to-groundwater (DGW) across landscapes and the ecological properties of vegetation assemblages is essential for effective management of the impacts of groundwater extraction. Little is known, however, about relationships between DGW and the ecology of mesic woodlands in GDEs. Here, we investigated relationships between a naturally occurring DGW gradient and plant species composition, richness and abundance in mesic Eucalyptus woodlands of eastern Australia. Across 16 sites varying in DGW from 2.4 m to 43.7 m, we found that plant species composition varied significantly in relation to DGW, independently of a range of 14 physical and chemical attributes of the environment. Nine understorey species, representing only 7% of the pool of 131 plant species, were identified as contributing to up to 50% of variation in species composition among the study sites. We suggest this dominant pattern driver in the understorey is explained by differential abilities among understorey species in their ability either to tolerate extended dry conditions at deeper DGW sites during periods of low rainfall, or to withstand periodically waterlogged conditions at shallow sites. Plant species richness and total plant abundance (a measure of plant productivity) were not significantly and independently related to DGW or any of the other 14 environmental attributes. Our finding for a direct relationship between DGW and plant species composition provides important reference information on the ecological condition of these mesic woodlands in the absence of groundwater extraction. Such information is vital for setting ecological thresholds that ensure sustainable extraction of groundwater.

Abbreviations

DGW:

Depth-to-GroundWater

GDE:

Groundwater-Dependent Ecosystem

HSSGW:

Highlands Sandstone Scribbly Gum Woodlands

HSTOF:

Highlands Shale Tall Open Forests

NESW:

Nepean Enriched Sandstone Woodlands

SCA:

Sydney Catchment Authority

References

  1. Ahmad, N.M., P.M. Martin and J.M. Vella. 2009. Floral structure and development in the dioecious australian endemic Lomandra longifolia (Lomandraceae). Austr. J. Bot. 56: 666–683.

    Article  Google Scholar 

  2. ANBG. 2012. Australian National Botanic Gardens. Vol. 2014, Australian Commonwealth, Canberra.

    Google Scholar 

  3. Benyon, R.G., S. Theiveyanathan and T.M. Doody. 2006. Impacts of tree plantations on groundwater in south-eastern Australia. Austr. J. Bot. 54: 181–192.

    Article  Google Scholar 

  4. Bolker, B.M., M.E. Brooks, C.J. Clark, S.W. Geange, J.R. Poulsen, M.H.H. Stevens and J.S. White. 2009. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 24: 127–135.

    PubMed  PubMed Central  Google Scholar 

  5. Brodersen, C.R. and A.J. McElrone. 2013. Maintenance of xylem network transport capacity: a review of embolism repair in vascular plants. Frontiers Plant Sci. 4: 108.

    Article  Google Scholar 

  6. Brown, J., L. Bach, A. Aldous, A. Wyers and J. DeGagné. 2011. Groundwater-dependent ecosystems in Oregon: an assessment of their distribution and associated threats. Frontiers Ecol. Environ. 9: 97–102.

    Article  Google Scholar 

  7. Canadell, J., R. Jackson, J. Ehleringer, H. Mooney, O. Sala and E.D. Schulze. 1996. Maximum rooting depth of vegetation types at the global scale. Oecologia 108: 583–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cartledge, O. and J. Carnahan. 1971. Studies of Austral bracken (Pteridium esculentum) in the vicinity of Canberra. New Phytol. 70: 619–626.

    Article  Google Scholar 

  9. Chen, Y., H. Zilliacus, W.H. Li, H.F. Zhang and Y.P. Chen. 2006. Ground-water level affects plant species diversity along the lower reaches of the Tarim river, western China. J. Arid Environ. 66: 231–246.

    Article  Google Scholar 

  10. Clarke, K.R. 1993. Non-parametric multivariate analyses of changes in community structure. Austr. J. Ecol. 18: 117–143.

    Article  Google Scholar 

  11. Cook, P.G., T.J. Hatton, D. Pidsley, A.L. Herczeg, A. Held, A. O’Grady and D. Eamus. 1998. Water balance of a tropical woodland ecosystem, northern Australia: a combination of micro-meteorological, soil physical and groundwater chemical approaches. J. Hydrol. 210: 161–177.

    Article  CAS  Google Scholar 

  12. Crawley, M.J. 2007. The R Book. John Wiley & Sons Ltd, London.

    Book  Google Scholar 

  13. Critchley, C., B. Chambers, J. Fowbert, R. Sanderson, A. Bhogal and S. Rose. 2002. Association between lowland grassland plant communities and soil properties. Biol. Conserv. 105: 199–215.

    Article  Google Scholar 

  14. Eamus, D., T. Haton, P. Cook and C. Colvin. 2006a. Ecohydrology: Vegetation Function, Water and Resource Management. CSIRO Publishing, Melbourne.

    Book  Google Scholar 

  15. Eamus, D., R. Froend, R. Loomes, G. Hose and B. Murray (2006b) A functional methodology for determining the groundwater regime needed to maintain the health of groundwater-dependent vegetation. Austr. J. Bot. 54: 97–114.

    Article  Google Scholar 

  16. Eamus, D., S. Zolfaghar, R. Villalobos-Vega, J. Cleverly and A. Huete (2015) Groundwater-dependent ecosystems: recent insights from satellite and field-based studies. Hydrol. Earth Syst. Sci. 19: 4229–4256.

    Article  Google Scholar 

  17. Eamus, D., A. Huete and Q. Yu (2016) Vegetation Dynamics: A Synthesis of Plant Ecophysiology, Remote Sensing and Modelling. Cambridge University Press, New York.

    Google Scholar 

  18. Elmore, A.J., S.J. Manning, J.F. Mustard, J.M. Craine. 2006. Decline in alkali meadow vegetation cover in California: the effects of groundwater extraction and drought. J. Appl. Ecol. 43: 770–779.

    Article  Google Scholar 

  19. Elmore, A.J., J.F. Mustard and S.J. Manning. 2003. Regional patterns of plant community response to changes in water: Owens Valley, California. Ecol. Appl. 13: 443–460.

    Article  Google Scholar 

  20. Groom, P.K., R.H. Froend and E.M. Mattiske. 2000. Impact of groundwater abstraction on a Banksia woodland, Swan Coastal Plain, Western Australia. Ecol. Manage. Restor. 1: 117–124.

    Article  Google Scholar 

  21. Halpern, C.B. and T.A. Spies. 1995. Plant species diversity in natural and managed forests of the pacific northwest. Ecol. Appl. 5: 913–934.

    Article  Google Scholar 

  22. Hatton, T. and R. Evans. 1998. Dependence of Ecosystems on Groundwater and its Significance to Australia. Land and Water Resources Research and Development Corporation, Canberra.

    Google Scholar 

  23. Hillel, D. 1971. Soil and Water: Physical Principles and Processes. Academic Press, New York

    Google Scholar 

  24. Jakeman, A.J., O. Barreteau, R.J. Hunt, J-D Rinaudo and A. Ross. 2016. Integrated Groundwater Management: Concepts, Approaches and Challenges. Springer International Publishing AG, Cham, Switzerland.

    Book  Google Scholar 

  25. Jones, J.B. 2001. Laboratory Guide for Conducting Soil Tests and Plant Analysis. CRC Press, Boca Raton, Florida.

    Book  Google Scholar 

  26. Kløve, B., P. Ala-Aho, G. Bertrand, J.J. Gurdak, H. Kupfersberger, J. Kværner, T. Muotka, H. Mykrä, E. Preda, P. Rossi, C.B. Uvo, E. Velasco and M. Pulido-Velazquez. 2014. Climate change impacts on groundwater and dependent ecosystems. J. Hydrol. 518 Part B: 250–266.

    Article  Google Scholar 

  27. Kodela, P. 1990. Pollen-tree relationships within forests of the Robertson-Moss Vale region, New South Wales, Australia. Rev. Palaeobot. Palynol. 64: 273–279.

    Article  Google Scholar 

  28. Konikow, L.F. and E. Kendy. 2005. Groundwater depletion: a global problem. Hydrogeol. J. 13: 317–320.

    Article  CAS  Google Scholar 

  29. Krishnamurty, K.V., E. Shpirt and M.M. Reddy. 1976. Trace metal extraction of soils and sediments by nitric acid -hydrogen peroxide. Atomic Absorption Newsletter 15: 67–80.

    Google Scholar 

  30. Legendre, P. and E.D. Gallagher. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Marini, L., M. Scotton, S. Klimek, J. Isselstein and A. Pecile. 2007. Effects of local factors on plant species richness and composition of alpine meadows. Agriculture, Ecosystems & Environment 119: 281–288.

    Article  Google Scholar 

  32. McCullagh, P. and J.A. Nelder. 1989. Generalized Linear Models. Second edition. Chapman and Hall, London.

    Book  Google Scholar 

  33. McGlone, M.S., J.M. Wilmshurst and H.M Leach. 2005. An ecological and historical review of bracken (Pteridium esculentum) in New Zealand, and its cultural significance. New Zealand J. Ecol. 29: 165–184.

    Google Scholar 

  34. Mendes, M.P, L. Ribeiro, T.S. David and A. Costa. 2016. How dependent are cork oak (Quercus suber L.) woodlands on groundwater? A case study in southwestern Portugal. Forest Ecol. Manage. 378: 122–130.

    Article  Google Scholar 

  35. Murray, B.R., M.J.B. Zeppel, G.C. Hose and D. Eamus. 2003. Groundwater-dependent ecosystems in Australia: it’s more than just water for rivers. Ecol. Manage. Restor. 4:110–113.

    Article  Google Scholar 

  36. Murray, B.R., G.C. Hose, D. Eamus and D. Licari. 2006. Valuation of groundwater-dependent ecosystems: a functional methodology incorporating ecosystem services. Austr. J. Bot.54: 221–229.

    Article  Google Scholar 

  37. Naumburg, E., R. Mata-gonzalez, R.G. Hunter, T. Mclendon and D.W. Martin. 2005. Phreatophytic vegetation and groundwater fluctuations: A review of current research and application of ecosystem response modeling with an emphasis on great basin vegetation. Environ. Manage. 35: 726–740.

    Article  Google Scholar 

  38. Nevill, J.C., P.J. Hancock, B.R. Murray, W.F. Ponder, W.F. Humphreys, M.L. Phillips and P.K. Groom. 2010. Groundwater-dependent ecosystems and the dangers of groundwater overdraft: a review and an Australian perspective. Pacific Conserv. Biol. 16: 187–208.

    Article  Google Scholar 

  39. NPWS. 2003. The Native Vegetation of the Woronora, O’Hares and Metropolitan Catchments. NSW National Parks and Wildlife Service, Hurstville.

    Google Scholar 

  40. O’Grady, A.P., J.L. Carter and K. Holland. 2010. Review of Australian Groundwater Discharge Studies of Terrestrial Systems. CSIRO: Water for a Healthy Country National Research Flagship. CSIRO, Melbourne.

    Google Scholar 

  41. Oksanen, J., G. Blanchet, R. Kindt, P. Legendre, P. Minchin, R.B. O’Hara, G. Simpson, P. Solymos, H. Stevens and H. Wagner. 2015. Vegan: Community Ecology Package. R package version 2.3-5. http://CRAN.R-project.org/package=vegan

  42. Pérez-Harguindeguy, N., S. Díaz, E. Garnier, S. Lavorel, H. Poorter, P. Jaureguiberry, M.S. Bret-Harte, W.K. Cornwell, J.M. Craine, D.E. Gurvich, C. Urcelay, E.J. Veneklaas, P.B. Reich, L. Poorter, I.J. Wright, P. Ray, L. Enrico, J.G. Pausas, A.C. de Vos, N. Buchmann, G. Funes, F. Quétier, J.G. Hodgson, K. Thompson, H.D. Morgan, H. ter Steege, M.G.A van der Heijden, L. Sack, B. Blonder, P. Poschlod, M.V. Vaieretti, G. Conti, A.C. Staver, S. Aquino and J.H.C. Cornelissen. 2013. New handbook for standardised measurement of plant functional traits worldwide. Austr. J. Bot. 61: 167–234.

    Article  Google Scholar 

  43. Pitman, J.I. 1989. Rainfall interception by bracken in open habitats— relations between leaf area, canopy storage and drainage rate. J. Hydrol. 105: 317–334.

    Article  Google Scholar 

  44. Polglase, P. and R.G. Benyon. 2009. The Impacts of Plantations and Native Forests on Water Security: Review and Scientific Assessment of Regional Issues and Research Needs. Forest and Wood Products Australia, Melbourne.

    Google Scholar 

  45. Quinn, G.P. and M.J. Keough. 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge.

    Google Scholar 

  46. R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://ww.R-project.org/

  47. Ross, J.B. 2014. Groundwater resource potential of the Triassic Sandstones of the Southern Sydney Basin: an improved understanding. Austral. J. Earth Sci. 61: 463–474.

    Article  CAS  Google Scholar 

  48. Scheffer, M., S. Carpenter, J.A. Foley, C. Folke and B. Walker. 2001. Catastrophic shifts in ecosystems. Nature 413: 591–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sivertsen, D. 2009. Native Vegetation Interim Type Standard. Department of Environment Climate Change and Water, Sydney.

    Google Scholar 

  50. Smith, R. 1985. Opportunistic behaviour of bracken (Pteridium aquilinum l. Kuhn) in moorland habitats: origins and constraints. In: R. Smith and J. Taylor (eds.), Bracken: Ecology, Land Use and Control Technology. Parthenon Press, Leeds, pp. 215–224.

    Google Scholar 

  51. Sommer, B. and R.H. Froend. 2014. Phreatophytic vegetation responses to groundwater depth in a drying Mediterranean-type landscape. J. Veg. Sci. 25: 1045–1055.

    Article  Google Scholar 

  52. Specht, A. and R.L. Specht. 1993. Species richness and canopy productivity of Australian plant communities. Biodivers. Conserv. 2: 152–167.

    Article  Google Scholar 

  53. Stevens, C., C. Dupre, C. Gaudnik, E. Dorland, N. Dise, D. Gowing, A. Bleeker, D. Alard, R. Bobbink and D. Fowler. 2011. Changes in species composition of European acid grasslands observed along a gradient of nitrogen deposition. J. Veg. Sci. 22: 207–215.

    Article  Google Scholar 

  54. Stromberg, J.C., R. Tiller and B. Richter. 1996. Effects of groundwater decline on riparian vegetation of semiarid regions: the San Pedro, Arizona. Ecol. Appl. 6: 113–131.

    Article  Google Scholar 

  55. ter Braak, C.J.F. 1987. The analysis of vegetation-environment relationships by canonical correspondence analysis. Plant Ecol. 69: 69–77.

    Article  Google Scholar 

  56. Thomson, J.A. 2000. Morphological and genomic diversity in the genus Pteridium (Dennstaedtiaceae). Ann. Bot. 85: 77–99.

    Article  CAS  Google Scholar 

  57. Thorne, R.S.J., W.P. Williams and Y. Cao. 1999. The influence of data transformations on biological monitoring studies using macroin-vertebrates. Water Res. 33: 343–350.

    Article  CAS  Google Scholar 

  58. van de Koppel, J., M. Rietkerk, F. van Langevelde, L. Kumar, C.A. Klausmeier, J.M. Fryxell, J.W. Hearne, J. van Andel, N. de Ridder and A. Skidmore. 2002. Spatial heterogeneity and irreversible vegetation change in semiarid grazing systems. Amer. Nat. 159: 209–218.

    Article  Google Scholar 

  59. Wada, Y., L.P.H. van Beek, C.M. van Kempen, J.W.T.M. Reckman, S. Vasak and M.F.P. Bierkens. 2010. Global depletion of groundwater resources. Geophys. Res. Lett. 37: L20402.

    Article  Google Scholar 

  60. Wickham, H. 2009. ggplot2: Elegant Graphics for Data Analysis. Springer Science & Business Media, London.

    Book  Google Scholar 

  61. Williams, P. 1992. Ecology of the endangered herb Scutellaria novaezelandiae. New Zealand J. Ecol. 16: 127–127.

    Google Scholar 

  62. Zhu, J., J. Yu, P. Wang, Q. Yu and D. Eamus. 2013. Distribution patterns of groundwater-dependent vegetation species diversity and their relationship to groundwater attributes in northwestern china. Ecohydrology 6:191–200.

    Article  CAS  Google Scholar 

  63. Zolfagher, S. (2013) Comparative Ecohysiology of Eucalyptus woodlands along a Depth-To-Groundwater Gradient. PhD thesis, University of Technology Sydney.

  64. Zolfaghar, S., R. Villalobos-Vega, J. Cleverly, M. Zeppel, R. Rumman and D. Eamus. 2014. The influence of depth-to-groundwater on structure and productivity of Eucalyptus woodlands. Austr. J. Bot. 62: 428–437

    Article  Google Scholar 

  65. Zolfaghar, S., R. Villalobos-Vega, J. Cleverly and D. Eamus. 2015. Co-ordination among leaf water relations and xylem vulnerability to embolism of Eucalyptus trees growing along a depth-to-groundwater gradient. Tree Physiol. 35: 732–743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. R. Murray.

Electronic supplementary material

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hingee, M.C., Eamus, D., Krix, D.W. et al. Patterns of plant species composition in mesic woodlands are related to a naturally occurring depth-to-groundwater gradient. COMMUNITY ECOLOGY 18, 21–30 (2017). https://doi.org/10.1556/168.2017.18.1.3

Download citation

Keywords

  • Abundance
  • Environmental attributes
  • Groundwater-dependent ecosystem
  • Groundwater extraction
  • Species richness

Nomenclature

  • PlantNET (The NSW Plant Information Network System). Royal Botanic Gardens and Domain Trust, Sydney. http://plantnet.rbgsyd.nsw.gov.au