Advertisement

Community Ecology

, Volume 18, Issue 1, pp 97–108 | Cite as

Fragmentation of hardwood floodplain forests – how does it affect species composition?

  • M. Petrášová-ŠibíkováEmail author
  • T. Bacigál
  • I. Jarolímek
Article
  • 1 Downloads

Abstract

The present study focuses on how spatial patch characteristics, such as patch area, shape and isolation, affect the natural species composition of hardwood floodplain forests. The natural species composition is defined according to species groups obtained using phytocoenological methods. The aim of the study was to establish the relationship between fragmentation indices and the number and proportion of species in each functional species group stated in this paper. This study is based on a dataset of 118 phytocoenological relevés sampled using the standard methodology of the Zürich-Montpellier School, ordered within the suballiance Ulmenion (mixed oak-elm-ash forests along the great rivers). The study area is situated in Central Europe, in the northern part of the Pannonian biogeographic region. The digital map of hardwood floodplain forests was rasterized to 25 m cell size. The FRAGSTATS software was used to obtain fragmentation indices, and generalised linear models tested the influence of forest patch fragmentation indices on species composition. Our analyses confirm that large hardwood floodplain forests are essential for natural species composition conservation, and that large fragment areas are highly susceptible to non-native species penetration. We also determined that small, compact fragments contain very valuable remnants of well-preserved natural hardwood floodplain forests with a high proportion of specialised Ulmenion species. However, disruption to hardwood floodplain forest natural borders engenders a greater threat to its natural species composition than decline in patch area, because disruption results in increased Shape index, increased contact with the surrounding environment, greater edge effect and a higher proportion of alien species in the forest community.

Keywords

Contiguity Fragmentation indices Functional species groups Patch isolation Shape index 

Abbreviation

ENN

Euclidean Nearest Neighbour

Nomenclature

Marhold (1998) for taxa Jarolímek et al. (2008) for syntaxa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrén, H. 1994. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71:355–366.CrossRefGoogle Scholar
  2. Barkmann, J. J., Doing, H. and Segal, S. 1964. Kritische Bemerkungen und Vorschläge zur quantitati-ven Vegetationsanalyse. Acta Bot. Neerl. 13:394–419.CrossRefGoogle Scholar
  3. Borhidi, A. 1996. Critical Revision of the Hungarian Plant Communities. Janus Pannonius University, Pécs, HU.Google Scholar
  4. Braun-Blanquet, J. 1964. Pflanzensociologie. Grunzűge der Vegetationskunde. Ed. 3. Springer Verlag, Wien.Google Scholar
  5. Chessel, D., Dufour, A.B. and Dray, S. 2013. Ade4: Analysis of Ecological Data: Exploratory and Euclidean methods in Environmental sciences. R-package, version 1.5-2, R Development Core Team, Vienna.Google Scholar
  6. Chytrý, M., Tichý, L., Holt, J. and Botta-Dukát, Z. 2002. Determination of diagnostic species with statistical fidelity measures. J. Veg. Sci. 13:79–90.CrossRefGoogle Scholar
  7. Chytrý, M., Kočí, M., Šumberová, K., Sádlo, J., Krahulec, F., Hájková, P., Hájek, M., Hoffmann, A., Blažková, D., Kučera, T., Novák, J., Řezníčková, M., Černý, T., Härtel, H. and Simonová, D. 2007. Vegetace Českére publiky, 1. Travinná a keříčková vegetace. Academia, Praha, CZ.Google Scholar
  8. Connor, E.F. and McCoy, E.D. 1979. The statistics and biology of the species-area relationship. Amer. Nat.113:791–833.CrossRefGoogle Scholar
  9. Cooper, C.B. and Walters, J.R. 2002. Independent effects of woodland loss and fragmentation on Brown Treecreeper distribution. Biol. Conserv. 105:1–10.CrossRefGoogle Scholar
  10. Digiovinazzo, P., Ficetola, G.F., Bottoni, L., Andreis, C. and Padoa-Schiopa, E. 2010. Ecological tresholds in herb communities for the management of suburban fragmented forests. Forest Ecol. Manage. 259:343–349.CrossRefGoogle Scholar
  11. Dolt, C., Goverde, M. and Baur, B. 2005. Effects of experimental smallscale habitat fragmentation on above-and below-ground plant biomass in calcareous grasslands. Acta Oecol. Internat. J. Ecol. 27:49–56.CrossRefGoogle Scholar
  12. Drinnan, I.N. 2005. The search for fragmentation thresholds in a southern Sydney suburb. Biol. Conserv. 124:339–349.CrossRefGoogle Scholar
  13. Echeverría, C., Newton, A.C., Lara, A., Benayas, J.M.R. and Coomes, D.A. 2007. Impacts of forest fragmentation on species composition and forest structure in the temperate landscape of southern Chile. Global Ecol. Biogeogr. 16:426–439.CrossRefGoogle Scholar
  14. Fahrig, L. 2002. Effect of habitat fragmentation on the extinction treshold: a synthesis. Ecol. Appl. 12:346–353.Google Scholar
  15. Fahrig, L. 2003. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34:487–515.CrossRefGoogle Scholar
  16. Forman, R.T.T. and Godron, M. 1986. Landscape Ecology. John Wiley and Sons, New York.Google Scholar
  17. Fox, M.D. and Fox, B.J. 1986. The susceptibility of natural communities to invasion. In: Groves, R.H., Burdon, J.J. (eds.) Ecology of Biological Invasions. Cambridge University Press, Cambridge, UK.Google Scholar
  18. Franklin, S. 2001. Remote Sensing for Sustainable Forest Management. Lewis Publishers, USA.CrossRefGoogle Scholar
  19. Generel 1976. Generálny plán (Generel) výstavby Bratislavského lesného parku s perspektívou tvorby do r. 2000. Ústav pre hospodársku úpravu lesov, Zvolen. (General project documentation of Bratislava forest park, with perspectives of management until 2000).Google Scholar
  20. Gilbert, F. S. 1980. The equilibrium theory of island biogeography: fact or fiction? Biogeography 7:209–35.CrossRefGoogle Scholar
  21. Gilpin, M. and Hanski, I. (eds.) 1991. Metapopulation Dynamics: Empirical and Theoretical Investigations. Academic Press, San Diego, USA.Google Scholar
  22. Goodman, D. 1987. The demography of chance extinction. In: Soulé, M.E. (ed), Viable Populations for Conservation. Cambridge University Press, Cambridge, UK.Google Scholar
  23. Götmark, F. and Thorell, M. 2003. Size of nature reserves: Densities of large trees and dead wood indicate high value of small conservation forests in southern Sweden. Biodivers. Conserv. 12: 1271–1285.CrossRefGoogle Scholar
  24. Gutzwiller, K.J. (ed) 2002. Applying Landscape Ecology in Biological Conservation, Springer-Verlag, New York, Berlin, Heidelberg.Google Scholar
  25. Harris, L.D. 1984. The Fragmented Forest. University of Chicago Press, Chicago, USA.CrossRefGoogle Scholar
  26. Hennekens, S.M. and Schaminée, J.H.J. 2001. TURBOVEG, a comprehensive data base management system for vegetation data. J. Veg. Sci. 12:589–591.CrossRefGoogle Scholar
  27. Hill, M.F. and Caswell, H. 1999. Habitat fragmentation and extinction thresholds on fractal landscapes. Ecol. Lett. 2:12 –127.CrossRefGoogle Scholar
  28. Hill, J.L. and Curran, P.J. 2001. Species composition in fragmented forests: conservation implications of changing forest area. Appl. Geogr. 21:157–174.CrossRefGoogle Scholar
  29. Hobbs, E.R. 1988. Species richness of urban forest patches and implications for urban landscape diversity. Lands. Ecol. 1:141–152.CrossRefGoogle Scholar
  30. Honnay, O., Hermy, M. and Coppin, P. 1999. Effects of area, age and diversity of forest patches in Belgium on plant species richness, and implications for convervation and reforestation. Biol. Conserv. 87:73–84.CrossRefGoogle Scholar
  31. Honnay, O., Verheyen, K. and Hermy, M. 2002. Permeability of ancient forest edges for weedy plant species invasion. Forest Ecol. Manage. 161:109–122.CrossRefGoogle Scholar
  32. Inghe, O. and Tamm, C.O. 1985. Survival and flowering of perennial herbs. IV. The behaviour of Hepatica nobilis and Sanicula europaea on permanent plots during 1943–81. Oikos 45:400–420.Google Scholar
  33. Janzen, D.H. 1986. The eternal external threat. In: Soule, M.E. (ed), Conservation Biology: The Science of Scarcity and Diversity. Sinauer Associates, Sunderland, USA. pp. 286–303.Google Scholar
  34. Jarolímek, I., Šibík, J., Hegedüšová, K., Janišová, M., Kliment, J., Kučera, P., Májeková, J., Michálková, D., Sadloňová, J., Šibíková, I., Škodová, I., Uhlířová, J., Ujházy, K., Ujházyová, M., Valachovič, M. and Zaliberová, M. 2008. A list of vegetation units of Slovakia, In: Jarolímek, I. and Šibík, J. (eds.), Diagnostic, Constant and Dominant Species of the Higher Vegetation Units of Slovakia. Veda, Bratislava, SK. pp. 295–329.Google Scholar
  35. Kapos, V. 1989. Effects of isolation on the water status of forest patches in the Brazilian Amazon. J. Trop. Ecol. 5:173–185.CrossRefGoogle Scholar
  36. Kettunen, M., Genovesi, P., Gollasch, S., Pagad, S., Starfinger, U., ten Brink, P. and Shine, C. 2009. Technical support to EU strategy on invasive alien species (IAS) – Assessment of the impacts of IAS in Europe and the EU (final module report for the European Commission). Institute for European Environmental Policy (IEEP), Brussels, BE.Google Scholar
  37. Kowarik, I. 2003. Biologische invasionen: Neophyten und Neozoen in Mitteleuropa. Ulmer, Stuttgart, DE.Google Scholar
  38. Kozová, M., Kalivodová, E. and Jurko, A. 1991. Ekologické hodnotenie hlavného mesta SR Bratislavy a návrh územného systému ekologickej stability. Ekologická štúdia, Bratislava, SK.Google Scholar
  39. Krippel, E. 1986. Postglaciálny vývoj vegetácie Slovenska. Veda, Bratislava, SK.Google Scholar
  40. LaGro, J. 1991. Assessing patch shape in landscape mosaics. Photogramm. Engin. Remote Sens. 57:285–293.Google Scholar
  41. Lambeck, R. and Hobbs, R.J. 2002. Landscape and regional planning for conservation: issues and practicalities. In: Gutzwiller, K. (ed). Applying Landscape Ecology in Biological Conservation. Springer-Verlag, New York, USA. pp. 360–380.CrossRefGoogle Scholar
  42. Laurance, W.F. 1990. Comparative responses of five arboreal marsupials to tropical forest fragmentation. J. Mammal. 71:641–653.CrossRefGoogle Scholar
  43. Laurance, W.F. and Yensen, E. 1991. Predicting the impacts of edge effects in fragmented habitats. Biol. Conserv. 55:77–92.CrossRefGoogle Scholar
  44. Laurance, W.F., Ferreira, L.V., Rankin-de Merona, J.M. and Laurance, S.G. 1998. Rain forest fragmentation and the Dynamics of Amazonian tree communities. Ecology 79:2032–2040.CrossRefGoogle Scholar
  45. Laurance, W.F., Pérez-Salicrup, D., Delamônica, P., Fearnside, P.M., D’angelo, S., Jerozolinski, A., Pohl, L. and Lovejoy, T.E. 2001. Rain forest fragmentation and the structure of Amazonian liana communities. Ecology 82:105–116.CrossRefGoogle Scholar
  46. Laurance, W. F., Lovejoy, T., Vasconcelos, H. L., Bruna, E. M., Didham, R. K., Stouffer, P., Gascon, C., Bierregaard, R., Laurance, S. and Sampaio, E. 2002. Ecosystem decay of Amazonian forest fragments, a 22-year investigation. Conserv. Biol. 16(3):605–618.CrossRefGoogle Scholar
  47. Levins, R. 1970. Extinction. In: Gesternhaber, M. (ed) Some Mathematical Problems in Biology. American Mathematical Society, Providence, Rhode Island, USA. pp. 77–107.Google Scholar
  48. Lindborg, R. and Eriksson, O. 2004. Historical landscape connectivity affects present plant species diversity. Ecology 85:1840–1845.CrossRefGoogle Scholar
  49. MacArthur, R.H. and Wilson, E.O. 1967. The Theory of Island biogeography. Princeton University Press, Princeton, USA.Google Scholar
  50. Malcolm, J.R. 1994. Edge effects in central Amazonian forest fragments. Ecology 75:2438– 2445.CrossRefGoogle Scholar
  51. Marhold, K. (ed) 1998. Papraďorasty a semenné rastliny (Ferns and flowering plants), In: Marhold, K. and Hindák, F. (eds), Zoznam nižších a vyšších rastlín Slovenska (Checklist of non-vascular and vascular plants of Slovakia). Veda, Bratislava, SK. pp. 333–687.Google Scholar
  52. McGarigal, K., Cushman, S.A., Neel, M.C. and Ene, E. 2002. FRAGSTATS: Spatial Pattern Analysis Program for Categorial Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst (2002) [www link] URL: http://www.umass.edu/landeco/research/fragstats/down-loads/fragstats_downloads.html
  53. Medvecká, J., Kliment, J., Májeková, J., Halada, Ľ., Zaliberová, M., Gojdičová, E., Feráková, V. and Jarolímek, I. 2012. Inventory of allien flora of Slovakia. Preslia 84:257-309.Google Scholar
  54. Medvecká, J., Jarolímek, I., Senko, D. and Svitok, M. 2013. Fifty years dynamics of the level of invasion of habitats in Slovakia along 2500 m a.s.l. altitudinal gradient. Biological Invasions. DOI 10.1007/s10530-013-0596-7 (1/1)Google Scholar
  55. Michalko, J. (ed) 1987. Geobotanical Map of CSSR. Slovak Socialist republic text part. Veda, Bratislava, SK.Google Scholar
  56. Murcia, C. 1995. Edge effects in fragmented forests: Implications for conservation. Trends Ecol. Evol. 10:58–62.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Patterson, B.D. 1987. The principle of nested subsets and its implications for biological conservation. Conserv. Biol. 1:321–334.CrossRefGoogle Scholar
  58. Patton, D.R. 1975. A diversity index for quantifying habitat edge. Wildlife Society Bulletin 3:171–173.Google Scholar
  59. Petrášová, M., Jarolímek, I. and Medvecká, J. 2013. Neophytes in Pannonian Hardwood floodplain forests – History, present situation and trends. Forest Ecol. Manage. 308:31–39.CrossRefGoogle Scholar
  60. Pyšek, P., Richardson, D.M. and Williamson, M. 2004. Predicting and explaining plant invasions through analysis of source area floras: some critical considerations. Divers. Distrib. 10:179–187.CrossRefGoogle Scholar
  61. Pyšek, P., Bacher, S., Chytrý, M., Jarošík, V., Wild, J., Celesti-Grapow, L., Gassó, N., Kenis, M., Lambdon, P. W., Nentwig, W., Pergl, J., Roques, A., Sádlo, J., Solarz, W., Vilà, M. and Hulme, P.E. 2010. Contrasting patterns in the invasions of European terrestrial and freshwater habitats by alien plants, insects and vertebrates. Global Ecol. Biogeogr. 19:317–331.CrossRefGoogle Scholar
  62. R development core team 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AT.Google Scholar
  63. Ranta, P., Brom, T., Joensuu, E. and Mikko, S. 1998. The fragmented Atlantic forest of Brazil: size, shape and distribution of forest fragments. Biodivers. Conserv. 7:385–403.CrossRefGoogle Scholar
  64. Reed, R.A., Johson-Barnard, J.J. and Baker, W.L. 1996. Contribution of roads to forest fragmentation in the Rocky Mountains. Conserv. Biol. 10:1098–1106.CrossRefGoogle Scholar
  65. Richardson, D.M., Pyšek, P., Rejmánek, M., Barbour, M.G., Panetta, F.D. and West, C.J. 2000. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6:93–107.CrossRefGoogle Scholar
  66. Ross, K.A., Fox, B.J. and Fox, M.D. 2002. Changes to plant species richness in forest fragments: fragment age, disturbance and fire history may be as important as area. J. Biogeogr. 29:749–758.CrossRefGoogle Scholar
  67. Rösch, V., Tscharntke, T., Schreber, Ch. and Batáry, P. 2015. Biodiversity conservation across taxa and landscapes requires many small as well as single large habitat fragments. Oecologia 179:209–222.CrossRefGoogle Scholar
  68. Santos, K., Kinoshita, L.S. and Santos, F.A.M., 2007. Tree species composition and similarity in semideciduous forest fragments of southeastern Brazil. Biolog. Conserv. 135:268–277.CrossRefGoogle Scholar
  69. Saunders, D. A., Hobbs, R. J. and Margules, C. R. 1991. Biological consequences of ecosystem fragmentation: a review. Conserv. Biol. 5:18–32.CrossRefGoogle Scholar
  70. Schwartz, M. W. 1999. Choosing the appropriate scale of reserves for conservation. Annu. Rev. Ecol. Syst. 30:83–108CrossRefGoogle Scholar
  71. Sengl, P., Magnes, P., Wagner, V., Erdös, L., Berg, Ch. 2016. Only large and highly-connected semi-dry grasslands achieve plant conservation targets in an agricultural matrix. Tuxenia 36:167– 190.Google Scholar
  72. Sudnik-Wojcikowska, B. and Kozniewska, B. 1988. Slownik z zakresu synantropizacji szaty roslinnej. (Dictionary of synantrophic vegetation). Wydawnictwo Uniwersitetu Warszavskiego, Warszava, PL.Google Scholar
  73. Šomšák, L. 1995. Predpokladané účinky VD Gabčíkovo na lužné ekosystémy podunajska. Zborník prednášok 2. (The influence of Gabčíkovo water dam on floodplain ecosystems). Medzinárodnej konferencie Ekológia Dunaja, City University Bratislava, Bratislava, SVK.Google Scholar
  74. Tabarelli, M., Mantovani, W. and Peres, C.A. 1999. Effects of habitat fragmentation on plant guild structure in the montane Atlantic forest of southeastern Brazil. Biol. Conserv. 91:119–127.CrossRefGoogle Scholar
  75. Terborgh, J. and Winter, B. 1980. Some causes of extinction. In: Soule M.E. and Wilcox B.A. (eds), Conservation Biology: An Evolutionary-Ecological Perspectives. Sinauer Associates, Sunderland, USA. pp. 119–134.Google Scholar
  76. Terborgh, J., Flores, C., Mueller, P. and Davenport, L. 1997. Estimating the ages of successional stands of tropical trees from growth increments. J. Trop. Ecol. 14:833–856.CrossRefGoogle Scholar
  77. Tichý L. 2002. Juice, software for vegetation classification. J. Veg. Sci. 13:451–453.CrossRefGoogle Scholar
  78. Tilman, D., May, R.M., Lehman, C.L. and Nowak, M.A. 1994. Habitat destruction and the extinction debt. Nature 371:65–66.CrossRefGoogle Scholar
  79. Trzcinski, M.K., Fahrig, L. and Merriam, G. 1999. Independent effects of forest cover and fragmentation on the distribution of forest breeding birds. Ecol. Appl. 9:586–593.CrossRefGoogle Scholar
  80. Turner, I.M. and Corlett, R.T. 1996. The conservation value of small, isolated fragments of lowland tropical rain forest. Trends Ecol. Evol. 11:330–333.CrossRefGoogle Scholar
  81. Turner, M.G., Romme, W.H., Gardner, R.H. and Hargrove, W.W. 1997. Effects of fire size and pattern on early succession in Yellowstone National Park. Ecol. Monogr. 67:411–33.CrossRefGoogle Scholar
  82. Turner, M.G., Gardner, R.H. and O’Neill, R.V. 2001. Landscape Ecology in Theory and Practice. Springer-Verlag, New York, USA.Google Scholar
  83. Vilá, M., Pino, J. and Font, X. 2007. Regional assesment of plant invasions across different habitat types. J. Veg. Sci. 18:35–42.CrossRefGoogle Scholar
  84. Walter, J., Essl, F., Englisch, T. and Kiehn, M. 2005. Neophytes in Austria: Habitat preferences and ecological effects. In: Nentwig, W. (ed), Biological Invasions – From Ecology to Control. Neobiota 6:13–25.Google Scholar
  85. Watson, R.A. 1983.A critique of anti-anthropocentric biocentrism. Environmental Ethics 5: 245–256.CrossRefGoogle Scholar
  86. Weber, E. 2003. Invasive Plant Species of the World: A Reference Guide to Environmental Weeds. CAB International Publ., Wallingford, USAGoogle Scholar
  87. Westhoff, V. and van der Maarel, E. 1973. The Braun-Blanquet approach. In: Whittaker, R. H. (ed), Ordination and Classification of Communities. W. Junk Publishers, The Hague, NE. pp. 617– 707.CrossRefGoogle Scholar
  88. Williamson, M. 1996. Biological Invasions. Chapman and Hall, London, UK.Google Scholar
  89. Wu, J., Liu and Z., Qian, J. 2013. Non-linear effect of habitat fragmentation on plant diversity: Evidence from a sand dune field in a desertified grassland in northeastern China. Ecol. Engin. 54:90–96.CrossRefGoogle Scholar
  90. Zudeima, P.A., Sayer, J. A. and Dijkman, W. 1996. Forest fragmentation and biodiversity: the case for intermediate-sized conservation areas. Environ. Conserv. 23:290–297.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2017

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • M. Petrášová-Šibíková
    • 1
    Email author
  • T. Bacigál
    • 2
  • I. Jarolímek
    • 1
  1. 1.Institute of Botany, Plant Science and Biodiversity CentreSlovak Academy of SciencesBratislavaSlovakia
  2. 2.Department of Mathematics and Descriptive Geometry, Faculty of Civil EngineeringSlovak University of TechnologyBratislavaSlovakia

Personalised recommendations