Fragmentation of hardwood floodplain forests – how does it affect species composition?

Abstract

The present study focuses on how spatial patch characteristics, such as patch area, shape and isolation, affect the natural species composition of hardwood floodplain forests. The natural species composition is defined according to species groups obtained using phytocoenological methods. The aim of the study was to establish the relationship between fragmentation indices and the number and proportion of species in each functional species group stated in this paper. This study is based on a dataset of 118 phytocoenological relevés sampled using the standard methodology of the Zürich-Montpellier School, ordered within the suballiance Ulmenion (mixed oak-elm-ash forests along the great rivers). The study area is situated in Central Europe, in the northern part of the Pannonian biogeographic region. The digital map of hardwood floodplain forests was rasterized to 25 m cell size. The FRAGSTATS software was used to obtain fragmentation indices, and generalised linear models tested the influence of forest patch fragmentation indices on species composition. Our analyses confirm that large hardwood floodplain forests are essential for natural species composition conservation, and that large fragment areas are highly susceptible to non-native species penetration. We also determined that small, compact fragments contain very valuable remnants of well-preserved natural hardwood floodplain forests with a high proportion of specialised Ulmenion species. However, disruption to hardwood floodplain forest natural borders engenders a greater threat to its natural species composition than decline in patch area, because disruption results in increased Shape index, increased contact with the surrounding environment, greater edge effect and a higher proportion of alien species in the forest community.

Abbreviations

ENN:

Euclidean Nearest Neighbour

References

  1. Andrén, H. 1994. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71:355–366.

    Article  Google Scholar 

  2. Barkmann, J. J., Doing, H. and Segal, S. 1964. Kritische Bemerkungen und Vorschläge zur quantitati-ven Vegetationsanalyse. Acta Bot. Neerl. 13:394–419.

    Article  Google Scholar 

  3. Borhidi, A. 1996. Critical Revision of the Hungarian Plant Communities. Janus Pannonius University, Pécs, HU.

    Google Scholar 

  4. Braun-Blanquet, J. 1964. Pflanzensociologie. Grunzűge der Vegetationskunde. Ed. 3. Springer Verlag, Wien.

    Google Scholar 

  5. Chessel, D., Dufour, A.B. and Dray, S. 2013. Ade4: Analysis of Ecological Data: Exploratory and Euclidean methods in Environmental sciences. R-package, version 1.5-2, R Development Core Team, Vienna.

    Google Scholar 

  6. Chytrý, M., Tichý, L., Holt, J. and Botta-Dukát, Z. 2002. Determination of diagnostic species with statistical fidelity measures. J. Veg. Sci. 13:79–90.

    Article  Google Scholar 

  7. Chytrý, M., Kočí, M., Šumberová, K., Sádlo, J., Krahulec, F., Hájková, P., Hájek, M., Hoffmann, A., Blažková, D., Kučera, T., Novák, J., Řezníčková, M., Černý, T., Härtel, H. and Simonová, D. 2007. Vegetace Českére publiky, 1. Travinná a keříčková vegetace. Academia, Praha, CZ.

    Google Scholar 

  8. Connor, E.F. and McCoy, E.D. 1979. The statistics and biology of the species-area relationship. Amer. Nat.113:791–833.

    Article  Google Scholar 

  9. Cooper, C.B. and Walters, J.R. 2002. Independent effects of woodland loss and fragmentation on Brown Treecreeper distribution. Biol. Conserv. 105:1–10.

    Article  Google Scholar 

  10. Digiovinazzo, P., Ficetola, G.F., Bottoni, L., Andreis, C. and Padoa-Schiopa, E. 2010. Ecological tresholds in herb communities for the management of suburban fragmented forests. Forest Ecol. Manage. 259:343–349.

    Article  Google Scholar 

  11. Dolt, C., Goverde, M. and Baur, B. 2005. Effects of experimental smallscale habitat fragmentation on above-and below-ground plant biomass in calcareous grasslands. Acta Oecol. Internat. J. Ecol. 27:49–56.

    Article  Google Scholar 

  12. Drinnan, I.N. 2005. The search for fragmentation thresholds in a southern Sydney suburb. Biol. Conserv. 124:339–349.

    Article  Google Scholar 

  13. Echeverría, C., Newton, A.C., Lara, A., Benayas, J.M.R. and Coomes, D.A. 2007. Impacts of forest fragmentation on species composition and forest structure in the temperate landscape of southern Chile. Global Ecol. Biogeogr. 16:426–439.

    Article  Google Scholar 

  14. Fahrig, L. 2002. Effect of habitat fragmentation on the extinction treshold: a synthesis. Ecol. Appl. 12:346–353.

    Google Scholar 

  15. Fahrig, L. 2003. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34:487–515.

    Article  Google Scholar 

  16. Forman, R.T.T. and Godron, M. 1986. Landscape Ecology. John Wiley and Sons, New York.

    Google Scholar 

  17. Fox, M.D. and Fox, B.J. 1986. The susceptibility of natural communities to invasion. In: Groves, R.H., Burdon, J.J. (eds.) Ecology of Biological Invasions. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  18. Franklin, S. 2001. Remote Sensing for Sustainable Forest Management. Lewis Publishers, USA.

    Book  Google Scholar 

  19. Generel 1976. Generálny plán (Generel) výstavby Bratislavského lesného parku s perspektívou tvorby do r. 2000. Ústav pre hospodársku úpravu lesov, Zvolen. (General project documentation of Bratislava forest park, with perspectives of management until 2000).

  20. Gilbert, F. S. 1980. The equilibrium theory of island biogeography: fact or fiction? Biogeography 7:209–35.

    Article  Google Scholar 

  21. Gilpin, M. and Hanski, I. (eds.) 1991. Metapopulation Dynamics: Empirical and Theoretical Investigations. Academic Press, San Diego, USA.

  22. Goodman, D. 1987. The demography of chance extinction. In: Soulé, M.E. (ed), Viable Populations for Conservation. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  23. Götmark, F. and Thorell, M. 2003. Size of nature reserves: Densities of large trees and dead wood indicate high value of small conservation forests in southern Sweden. Biodivers. Conserv. 12: 1271–1285.

    Article  Google Scholar 

  24. Gutzwiller, K.J. (ed) 2002. Applying Landscape Ecology in Biological Conservation, Springer-Verlag, New York, Berlin, Heidelberg.

  25. Harris, L.D. 1984. The Fragmented Forest. University of Chicago Press, Chicago, USA.

    Book  Google Scholar 

  26. Hennekens, S.M. and Schaminée, J.H.J. 2001. TURBOVEG, a comprehensive data base management system for vegetation data. J. Veg. Sci. 12:589–591.

    Article  Google Scholar 

  27. Hill, M.F. and Caswell, H. 1999. Habitat fragmentation and extinction thresholds on fractal landscapes. Ecol. Lett. 2:12 –127.

    Article  Google Scholar 

  28. Hill, J.L. and Curran, P.J. 2001. Species composition in fragmented forests: conservation implications of changing forest area. Appl. Geogr. 21:157–174.

    Article  Google Scholar 

  29. Hobbs, E.R. 1988. Species richness of urban forest patches and implications for urban landscape diversity. Lands. Ecol. 1:141–152.

    Article  Google Scholar 

  30. Honnay, O., Hermy, M. and Coppin, P. 1999. Effects of area, age and diversity of forest patches in Belgium on plant species richness, and implications for convervation and reforestation. Biol. Conserv. 87:73–84.

    Article  Google Scholar 

  31. Honnay, O., Verheyen, K. and Hermy, M. 2002. Permeability of ancient forest edges for weedy plant species invasion. Forest Ecol. Manage. 161:109–122.

    Article  Google Scholar 

  32. Inghe, O. and Tamm, C.O. 1985. Survival and flowering of perennial herbs. IV. The behaviour of Hepatica nobilis and Sanicula europaea on permanent plots during 1943–81. Oikos 45:400–420.

    Google Scholar 

  33. Janzen, D.H. 1986. The eternal external threat. In: Soule, M.E. (ed), Conservation Biology: The Science of Scarcity and Diversity. Sinauer Associates, Sunderland, USA. pp. 286–303.

    Google Scholar 

  34. Jarolímek, I., Šibík, J., Hegedüšová, K., Janišová, M., Kliment, J., Kučera, P., Májeková, J., Michálková, D., Sadloňová, J., Šibíková, I., Škodová, I., Uhlířová, J., Ujházy, K., Ujházyová, M., Valachovič, M. and Zaliberová, M. 2008. A list of vegetation units of Slovakia, In: Jarolímek, I. and Šibík, J. (eds.), Diagnostic, Constant and Dominant Species of the Higher Vegetation Units of Slovakia. Veda, Bratislava, SK. pp. 295–329.

    Google Scholar 

  35. Kapos, V. 1989. Effects of isolation on the water status of forest patches in the Brazilian Amazon. J. Trop. Ecol. 5:173–185.

    Article  Google Scholar 

  36. Kettunen, M., Genovesi, P., Gollasch, S., Pagad, S., Starfinger, U., ten Brink, P. and Shine, C. 2009. Technical support to EU strategy on invasive alien species (IAS) – Assessment of the impacts of IAS in Europe and the EU (final module report for the European Commission). Institute for European Environmental Policy (IEEP), Brussels, BE.

    Google Scholar 

  37. Kowarik, I. 2003. Biologische invasionen: Neophyten und Neozoen in Mitteleuropa. Ulmer, Stuttgart, DE.

    Google Scholar 

  38. Kozová, M., Kalivodová, E. and Jurko, A. 1991. Ekologické hodnotenie hlavného mesta SR Bratislavy a návrh územného systému ekologickej stability. Ekologická štúdia, Bratislava, SK.

    Google Scholar 

  39. Krippel, E. 1986. Postglaciálny vývoj vegetácie Slovenska. Veda, Bratislava, SK.

    Google Scholar 

  40. LaGro, J. 1991. Assessing patch shape in landscape mosaics. Photogramm. Engin. Remote Sens. 57:285–293.

    Google Scholar 

  41. Lambeck, R. and Hobbs, R.J. 2002. Landscape and regional planning for conservation: issues and practicalities. In: Gutzwiller, K. (ed). Applying Landscape Ecology in Biological Conservation. Springer-Verlag, New York, USA. pp. 360–380.

    Chapter  Google Scholar 

  42. Laurance, W.F. 1990. Comparative responses of five arboreal marsupials to tropical forest fragmentation. J. Mammal. 71:641–653.

    Article  Google Scholar 

  43. Laurance, W.F. and Yensen, E. 1991. Predicting the impacts of edge effects in fragmented habitats. Biol. Conserv. 55:77–92.

    Article  Google Scholar 

  44. Laurance, W.F., Ferreira, L.V., Rankin-de Merona, J.M. and Laurance, S.G. 1998. Rain forest fragmentation and the Dynamics of Amazonian tree communities. Ecology 79:2032–2040.

    Article  Google Scholar 

  45. Laurance, W.F., Pérez-Salicrup, D., Delamônica, P., Fearnside, P.M., D’angelo, S., Jerozolinski, A., Pohl, L. and Lovejoy, T.E. 2001. Rain forest fragmentation and the structure of Amazonian liana communities. Ecology 82:105–116.

    Article  Google Scholar 

  46. Laurance, W. F., Lovejoy, T., Vasconcelos, H. L., Bruna, E. M., Didham, R. K., Stouffer, P., Gascon, C., Bierregaard, R., Laurance, S. and Sampaio, E. 2002. Ecosystem decay of Amazonian forest fragments, a 22-year investigation. Conserv. Biol. 16(3):605–618.

    Article  Google Scholar 

  47. Levins, R. 1970. Extinction. In: Gesternhaber, M. (ed) Some Mathematical Problems in Biology. American Mathematical Society, Providence, Rhode Island, USA. pp. 77–107.

    Google Scholar 

  48. Lindborg, R. and Eriksson, O. 2004. Historical landscape connectivity affects present plant species diversity. Ecology 85:1840–1845.

    Article  Google Scholar 

  49. MacArthur, R.H. and Wilson, E.O. 1967. The Theory of Island biogeography. Princeton University Press, Princeton, USA.

    Google Scholar 

  50. Malcolm, J.R. 1994. Edge effects in central Amazonian forest fragments. Ecology 75:2438– 2445.

    Article  Google Scholar 

  51. Marhold, K. (ed) 1998. Papraďorasty a semenné rastliny (Ferns and flowering plants), In: Marhold, K. and Hindák, F. (eds), Zoznam nižších a vyšších rastlín Slovenska (Checklist of non-vascular and vascular plants of Slovakia). Veda, Bratislava, SK. pp. 333–687.

    Google Scholar 

  52. McGarigal, K., Cushman, S.A., Neel, M.C. and Ene, E. 2002. FRAGSTATS: Spatial Pattern Analysis Program for Categorial Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst (2002) [www link] URL: http://www.umass.edu/landeco/research/fragstats/down-loads/fragstats_downloads.html

  53. Medvecká, J., Kliment, J., Májeková, J., Halada, Ľ., Zaliberová, M., Gojdičová, E., Feráková, V. and Jarolímek, I. 2012. Inventory of allien flora of Slovakia. Preslia 84:257-309.

    Google Scholar 

  54. Medvecká, J., Jarolímek, I., Senko, D. and Svitok, M. 2013. Fifty years dynamics of the level of invasion of habitats in Slovakia along 2500 m a.s.l. altitudinal gradient. Biological Invasions. DOI 10.1007/s10530-013-0596-7 (1/1)

  55. Michalko, J. (ed) 1987. Geobotanical Map of CSSR. Slovak Socialist republic text part. Veda, Bratislava, SK.

  56. Murcia, C. 1995. Edge effects in fragmented forests: Implications for conservation. Trends Ecol. Evol. 10:58–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Patterson, B.D. 1987. The principle of nested subsets and its implications for biological conservation. Conserv. Biol. 1:321–334.

    Article  Google Scholar 

  58. Patton, D.R. 1975. A diversity index for quantifying habitat edge. Wildlife Society Bulletin 3:171–173.

    Google Scholar 

  59. Petrášová, M., Jarolímek, I. and Medvecká, J. 2013. Neophytes in Pannonian Hardwood floodplain forests – History, present situation and trends. Forest Ecol. Manage. 308:31–39.

    Article  Google Scholar 

  60. Pyšek, P., Richardson, D.M. and Williamson, M. 2004. Predicting and explaining plant invasions through analysis of source area floras: some critical considerations. Divers. Distrib. 10:179–187.

    Article  Google Scholar 

  61. Pyšek, P., Bacher, S., Chytrý, M., Jarošík, V., Wild, J., Celesti-Grapow, L., Gassó, N., Kenis, M., Lambdon, P. W., Nentwig, W., Pergl, J., Roques, A., Sádlo, J., Solarz, W., Vilà, M. and Hulme, P.E. 2010. Contrasting patterns in the invasions of European terrestrial and freshwater habitats by alien plants, insects and vertebrates. Global Ecol. Biogeogr. 19:317–331.

    Article  Google Scholar 

  62. R development core team 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AT.

    Google Scholar 

  63. Ranta, P., Brom, T., Joensuu, E. and Mikko, S. 1998. The fragmented Atlantic forest of Brazil: size, shape and distribution of forest fragments. Biodivers. Conserv. 7:385–403.

    Article  Google Scholar 

  64. Reed, R.A., Johson-Barnard, J.J. and Baker, W.L. 1996. Contribution of roads to forest fragmentation in the Rocky Mountains. Conserv. Biol. 10:1098–1106.

    Article  Google Scholar 

  65. Richardson, D.M., Pyšek, P., Rejmánek, M., Barbour, M.G., Panetta, F.D. and West, C.J. 2000. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6:93–107.

    Article  Google Scholar 

  66. Ross, K.A., Fox, B.J. and Fox, M.D. 2002. Changes to plant species richness in forest fragments: fragment age, disturbance and fire history may be as important as area. J. Biogeogr. 29:749–758.

    Article  Google Scholar 

  67. Rösch, V., Tscharntke, T., Schreber, Ch. and Batáry, P. 2015. Biodiversity conservation across taxa and landscapes requires many small as well as single large habitat fragments. Oecologia 179:209–222.

    Article  Google Scholar 

  68. Santos, K., Kinoshita, L.S. and Santos, F.A.M., 2007. Tree species composition and similarity in semideciduous forest fragments of southeastern Brazil. Biolog. Conserv. 135:268–277.

    Article  Google Scholar 

  69. Saunders, D. A., Hobbs, R. J. and Margules, C. R. 1991. Biological consequences of ecosystem fragmentation: a review. Conserv. Biol. 5:18–32.

    Article  Google Scholar 

  70. Schwartz, M. W. 1999. Choosing the appropriate scale of reserves for conservation. Annu. Rev. Ecol. Syst. 30:83–108

    Article  Google Scholar 

  71. Sengl, P., Magnes, P., Wagner, V., Erdös, L., Berg, Ch. 2016. Only large and highly-connected semi-dry grasslands achieve plant conservation targets in an agricultural matrix. Tuxenia 36:167– 190.

    Google Scholar 

  72. Sudnik-Wojcikowska, B. and Kozniewska, B. 1988. Slownik z zakresu synantropizacji szaty roslinnej. (Dictionary of synantrophic vegetation). Wydawnictwo Uniwersitetu Warszavskiego, Warszava, PL.

    Google Scholar 

  73. Šomšák, L. 1995. Predpokladané účinky VD Gabčíkovo na lužné ekosystémy podunajska. Zborník prednášok 2. (The influence of Gabčíkovo water dam on floodplain ecosystems). Medzinárodnej konferencie Ekológia Dunaja, City University Bratislava, Bratislava, SVK.

    Google Scholar 

  74. Tabarelli, M., Mantovani, W. and Peres, C.A. 1999. Effects of habitat fragmentation on plant guild structure in the montane Atlantic forest of southeastern Brazil. Biol. Conserv. 91:119–127.

    Article  Google Scholar 

  75. Terborgh, J. and Winter, B. 1980. Some causes of extinction. In: Soule M.E. and Wilcox B.A. (eds), Conservation Biology: An Evolutionary-Ecological Perspectives. Sinauer Associates, Sunderland, USA. pp. 119–134.

    Google Scholar 

  76. Terborgh, J., Flores, C., Mueller, P. and Davenport, L. 1997. Estimating the ages of successional stands of tropical trees from growth increments. J. Trop. Ecol. 14:833–856.

    Article  Google Scholar 

  77. Tichý L. 2002. Juice, software for vegetation classification. J. Veg. Sci. 13:451–453.

    Article  Google Scholar 

  78. Tilman, D., May, R.M., Lehman, C.L. and Nowak, M.A. 1994. Habitat destruction and the extinction debt. Nature 371:65–66.

    Article  Google Scholar 

  79. Trzcinski, M.K., Fahrig, L. and Merriam, G. 1999. Independent effects of forest cover and fragmentation on the distribution of forest breeding birds. Ecol. Appl. 9:586–593.

    Article  Google Scholar 

  80. Turner, I.M. and Corlett, R.T. 1996. The conservation value of small, isolated fragments of lowland tropical rain forest. Trends Ecol. Evol. 11:330–333.

    Article  CAS  Google Scholar 

  81. Turner, M.G., Romme, W.H., Gardner, R.H. and Hargrove, W.W. 1997. Effects of fire size and pattern on early succession in Yellowstone National Park. Ecol. Monogr. 67:411–33.

    Article  Google Scholar 

  82. Turner, M.G., Gardner, R.H. and O’Neill, R.V. 2001. Landscape Ecology in Theory and Practice. Springer-Verlag, New York, USA.

  83. Vilá, M., Pino, J. and Font, X. 2007. Regional assesment of plant invasions across different habitat types. J. Veg. Sci. 18:35–42.

    Article  Google Scholar 

  84. Walter, J., Essl, F., Englisch, T. and Kiehn, M. 2005. Neophytes in Austria: Habitat preferences and ecological effects. In: Nentwig, W. (ed), Biological Invasions – From Ecology to Control. Neobiota 6:13–25.

  85. Watson, R.A. 1983.A critique of anti-anthropocentric biocentrism. Environmental Ethics 5: 245–256.

    Article  Google Scholar 

  86. Weber, E. 2003. Invasive Plant Species of the World: A Reference Guide to Environmental Weeds. CAB International Publ., Wallingford, USA

    Google Scholar 

  87. Westhoff, V. and van der Maarel, E. 1973. The Braun-Blanquet approach. In: Whittaker, R. H. (ed), Ordination and Classification of Communities. W. Junk Publishers, The Hague, NE. pp. 617– 707.

    Chapter  Google Scholar 

  88. Williamson, M. 1996. Biological Invasions. Chapman and Hall, London, UK.

    Google Scholar 

  89. Wu, J., Liu and Z., Qian, J. 2013. Non-linear effect of habitat fragmentation on plant diversity: Evidence from a sand dune field in a desertified grassland in northeastern China. Ecol. Engin. 54:90–96.

    Article  Google Scholar 

  90. Zudeima, P.A., Sayer, J. A. and Dijkman, W. 1996. Forest fragmentation and biodiversity: the case for intermediate-sized conservation areas. Environ. Conserv. 23:290–297.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Petrášová-Šibíková.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Petrášová-Šibíková, M., Bacigál, T. & Jarolímek, I. Fragmentation of hardwood floodplain forests – how does it affect species composition?. COMMUNITY ECOLOGY 18, 97–108 (2017). https://doi.org/10.1556/168.2017.18.1.11

Download citation

Keywords

  • Contiguity
  • Fragmentation indices
  • Functional species groups
  • Patch isolation
  • Shape index

Nomenclature

  • Marhold (1998) for taxa
  • Jarolímek et al. (2008) for syntaxa