Advertisement

Community Ecology

, Volume 18, Issue 1, pp 87–96 | Cite as

Cannibalism: Do risks of fighting and reprisal reduce predatory rates?

  • F. J. Fernandez-Maldonado
  • J. R. Gallego
  • A. Valencia
  • M. GamezEmail author
  • Z. Varga
  • J. Garay
  • T. Cabello
Article

Abstract

Cannibalism is a common phenomenon among insects. It has raised considerable interest both from a theoretical perspective and because of its importance in population dynamics in natural ecosystems. It could also play an important role from an applied perspective, especially when using predatory species in biological control programmes. The present paper aims to study the cannibalistic behaviour of Nabis pseudoferus Remane and the functional response of adult females. In a non-choice experiment, adult females showed clear acceptance of immature conspecifics as prey, with relatively high mortality values (51.89 ± 2.69%). These values were lower than those occurring for heterospecific prey, Spodoptera exigua Hübner, under the same conditions (80.00 ± 2.82%). However, the main result was that the rate of predation on heterospecific prey was reduced to 59.09 ± 7.08% in the presence of conspecific prey. The prey-capture behaviour of adult females differed when they hunted conspecific versus heterospecific prey. This was shown in the average handling time, which was 23.3 ± 3.3 min in the first case (conspecific) versus 16.6 ± 2.5 min in the second (heterospecific). Furthermore, the values increased in the former case and declined in the latter according to the order in which the prey were captured. The difference in handling time was not significant when adjusting the adult female functional response to conspecific nymphs. We argue that these results likely indicate risk aversion and a fear of reprisal among conspecifics.

Keywords

Functional response Heterospecific and conspecific prey Insect Nabis pseudoferus Predatory behaviour Preypredator relationship Spodoptera exigua 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleosfoor, M., N. Mortazavi and M. Poorkashkooli. 2014. Comparison cannibalistic behavior between two ladybirds, Coccinella septempunctata and Hippodamia variegata under laboratory experiments. Mun. Ent. Zool. 9: 645–650.Google Scholar
  2. Braman, S.K. 2000. Damsel bugs (Nabidae). In: C.W. Shaefer and A.R. Panizzi (eds.), Heteroptera of Economic Importance. CRC Press. Boca Raton, FL., pp. 639–656CrossRefGoogle Scholar
  3. Bressendorff B.B. and S. Toff. 2011. Dome-shaped functional response induced by nutrient imbalance of the prey. Biol. Lett. 7: 517–520.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cabello, T. 1988. Natural enemies of noctuid pests in alfalfa, corn, cotton and soybean crops in Southern Spain. J. Appl. Entomol. 108: 80–88.CrossRefGoogle Scholar
  5. Cabello, T., F. Bonfil, J.R. Gallego, F.J. Fernandez-Maldonado, M. Gamez and J. Garay. 2015. Can interactions between an omnivorous hemipteran and an egg parasitoid limit the level of biological control for the tomato pinworm? Environ. Entomol. 44: 12–26.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cabello, T., J.R. Gallego, F.J. Fernandez-Maldonado, M. Gamez, E. Vila, M. Pino and E. Hernandez-Suarez. 2012. Biological control strategies for the South American tomato moth (Lep.: Gelechiidae) in greenhouse tomatoes. J. Econ. Entomol. 105: 2085–2096.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cabello, T., M. Gamez, A. Torres and J. Garay. 2011. Possible effects of inter–specific competition on the coexistence of two parasitoid species: Trichogramma brassicae and Chelonus oculator (Hym.: Trichogrammatidae, Braconidae). Community Ecol. 12: 78–88.CrossRefGoogle Scholar
  8. Cabello, T., M. Gamez and Z. Varga. 2007. An improvement of the Holling type III functional response in entomophagous species model. J. Biol. Syst. 15: 515–524.CrossRefGoogle Scholar
  9. Cabello, T., H. Rodriguez and P. Vargas. 1984. Development, longevity and fecundity of Sopodoptera littoralis (Lep.: Noctuidae) reared on eight artificial diets. J. Appl. Entomol. 97: 494–499.Google Scholar
  10. Canon, 2014. Communication Software for the Camera EOS Utility, Version 2.14. Canon Inc.Google Scholar
  11. Capinera, J.L. 2010. Insects and Wildlife. Wiley–Blackwell, Singapore.CrossRefGoogle Scholar
  12. Clercq, P. de, T.A. Coudron and E.W. Riddick. 2014. Production of heteropteran predators. In: J.A. Morales-Ramos, M.G. Rojas and D.I. Shapiro-Ilan (eds.), Mass Production of Beneficial Organisms: Invertebrates and Entomopathogens. Academic Press, Amsterdam. pp. 57–100.CrossRefGoogle Scholar
  13. Cock, M. 1978. The assessment of preference. J. Anim. Ecol. 47: 805–816.CrossRefGoogle Scholar
  14. Dixon, A.F.G. 2000. Insect Predator-Prey Dynamics: Ladybird Beetles and Biological Control. Cambridge University Press, Cambridge.Google Scholar
  15. Dong, Q. and G.A. Polis. 1992. The dynamics of cannibalistic populations: a foraging perspective. In: M.A. Elgar, M.A. and B.J. Crespi (eds.), Cannibalism: Ecology and Evolution among Diverse Taxa. Oxford University Press, Oxford. pp. 13–37.Google Scholar
  16. Elgar, M.A. and B.J. Crespi. 1992. Ecology and evolution of cannibalism. In: M. A. Elgar and B.J. Crespi (eds.), Cannibalism: Ecology and Evolution among Diverse Taxa. Oxford University Press, Oxford. pp. 1–12.Google Scholar
  17. Fagan, W.F. 1997. Omnivory as a stabilizing feature of natural communities. Am. Nat. 150: 554–567.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fathipour Y. and A.A.F. Jafari. 2003. Functional response of predators Nabis capsiformis and Chrysoperla carnea to different densities of Creontiades pallidus nymphs. J. Agric. Sci. Nat. Resour. 10: 125–133.Google Scholar
  19. Fox, L.R. 1975. Cannibalism in natural populations. Annu. Rev. Ecol. Evol. S. 6: 87–106.CrossRefGoogle Scholar
  20. Garay, J. and F.T. Mori. 2010. When is the opportunism remunerative? Community Ecol. 11: 160–170.CrossRefGoogle Scholar
  21. Garay, J., Z. Varga, M. Gamez and T. Cabello. 2015. Functional response and population dynamics for fighting predator, based on activity distribution. J. Theor. Biol. 368: 74–82.CrossRefGoogle Scholar
  22. Hack, M.A. 1997. The energetic costs of fighting in the house cricket, Acheta domesticus L. Behav. Ecol. 8: 28–36.CrossRefGoogle Scholar
  23. Hagen, K.S., N.J. Mills, G. Gordh and J.A. McMurtry. 1999. Terrestrial arthropod predators of insect and mite pests. In: T.S. Bellows, T.W. Fisher, L.E. Caltagirone, D.L. Dahlsten, G. Gordh and C.B. Huffaker (eds.), Handbook of Biological Control: Principles and Applications of Biological Control. Academic Press, London. pp. 383–503.CrossRefGoogle Scholar
  24. Hamdi, F., J. Chadoeuf, B. Chermiti and O. Bonato. 2013. Evidence of cannibalism in Macrolophus pygmaeus, a natural enemy of whiteflies. J. Insect Behav. 26: 614–621.CrossRefGoogle Scholar
  25. Holling, C.S. 1959. The components of predation as revealed by a study of small–mammal predation of the European pine sawfly. Can. Entomol. 91: 293–320.CrossRefGoogle Scholar
  26. Holling, C.S. 1961. Principles of insect predation. Annu. Rev. Entomol. 6: 163–182.CrossRefGoogle Scholar
  27. Hurd, L.E. 2008. Predation: The role of generalist predators in biodiversity and biological control. In: J.L. Capinera (ed.), Encyclopedia of Entomology. Springer, Dordrecht, NL. pp. 3038–3042.Google Scholar
  28. IBM. 2012. IBM SPSS Statistics for Windows, Version 21.0. IBM Corp. Armonk, NY.Google Scholar
  29. Jandel Scientific. 1994. Table Curve 2D User’s Manual. Version 2.0. Jandel Scientific. San Rafael, CA.Google Scholar
  30. Jeschke J.M., M. Kopp and R. Tollrian. 2004. Consumer-food systems: why type I functional responses are exclusive to filter feeders. Biol. Rev. 79: 337–349.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Joyner, K. and F. Gould. 1987. Conspecific tissues and secretions as sources of nutrition. In: F. Slansky and J.G. Rodriguez (eds.), Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates. Wiley, NY. pp 697–719.Google Scholar
  32. Juliano, S.A. 2001. Nonlinear curve fitting. Predation and functional response curves. In: S.M. Scheiner and J. Gurevitch (eds.), Design and Analysis of Ecological Experiments. Oxford University Press, Oxford. pp. 178–196.Google Scholar
  33. Kishida, O., G.C. Trussell, K. Nishimura and T. Ohgushi. 2009. Inducible defenses in prey intensify predator cannibalism. Ecology 90: 3150–3158.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Latham, D.R. and N.J. Mills. 2009. Quantifying insect predation: a comparison of three methods for estimating daily per capita consumption of two aphidophagous predators. Environ. Entomol. 38: 1117–1125.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Leon–Beck, M. and M. Coll. 2007. Plant and prey consumption cause a similar reductions in cannibalism by an omnivorous bug. J. Insect Behav. 20: 67–76.CrossRefGoogle Scholar
  36. Mangeaud, A. and M. Videla. 2005. En busca de la independencia perdida: la utilización de modelos lineales generalizados mixtos en pruebas de preferencia. Ecol. Austral 15: 199–206.Google Scholar
  37. Manly, B.F.J., P. Miller and L. Cook. 1972. Analysis of a selective predation experiment. Am. Nat. 106: 719–736.CrossRefGoogle Scholar
  38. Mayntz, D., D. Raubenheimer, M. Salomon, S. Toft and S.J. Simpson. 2005. Nutrient–specific foraging in invertebrate predators. Science 307: 111–112.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Mills, N.J. 1982. Voracity, cannibalism and coccinellid predation. Ann. Appl. Biol. 101: 144–148.Google Scholar
  40. Motulsky, H. and A. Christopoulos. 2003. Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting. GraphPad Software, Inc., San Diego, CA.Google Scholar
  41. Perkins, P.V. and T.F. Watson. 1972. Biology of Nabis alternatus (Hem.: Nabidae). Ann. Entomol. Soc. Am. 65: 54–57.CrossRefGoogle Scholar
  42. Pfennig, D.W., H.K. Reeve and P.W. Sherman. 1993. Kin recognition and cannibalism in spadefoot toad tadpoles. Anim. Behav. 46: 87–94.CrossRefGoogle Scholar
  43. Polis, G.A. 1981. The evolution and dynamics of intraspecific predation. Annu. Rev. Ecol. Evol. S., 12: 225–251.CrossRefGoogle Scholar
  44. Propp, G.D. 1982. Functional response of Nabis americoferus to two of its prey, Spodoptera exigua and Lygus hesperus. Environ. Entomol. 11: 670–674.CrossRefGoogle Scholar
  45. Puchkov, A.V. 1980. Particulars of the biology of predacious Nabis spp. Zashch. Rast. 8: 44.Google Scholar
  46. Ramirez, C.C., E. Fuentes-Contreras, L.C. Rodríguez and H.M. Niemeyer. 2000. Pseudoreplication and its frequency in olfactometric laboratory studies. J. Chem. Ecol. 26: 1423–1431.CrossRefGoogle Scholar
  47. Ricard, I. 2008. Statistical Methods for Insect Choice Experiments. PhD Dissertation. École Polytechnique Fédérale de Lausanne, Lausanne, CH.Google Scholar
  48. Riechert, S.E. 1988. The energetic costs of fighting. Integr. Comp. Biol. 28: 877–884.Google Scholar
  49. Rudolf, H.W. 2008. Impact of cannibalism on predator–prey dynamics: size-structured interactions and apparent mutualism. Ecology 89: 1650–1660.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Santana, A.F., A.C. Roselino, F.A. Cappelari and F.S. Zucoloto. 2012. Cannibalism in insects. In: A.R. Panizzi and J.R.P. Parra (eds.), Insect Bioecology and Nutrition for Integrated Pest Management. CRC Press and Taylor and Francis Group, Boca Raton, FL. pp. 177–194.CrossRefGoogle Scholar
  51. Schenk, D., L.F. Bersier and S. Bacher. 2005. An experimental test of the nature of predation: neither prey- nor ratio-dependent. J. Anim. Ecol. 74: 86–91.CrossRefGoogle Scholar
  52. Schmitz, O.J. 2007. Predator diversity and trophic interactions. Ecology 88: 2415–2426.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Schneider, C.A., W.S. Rasband and K.W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9: 671–675.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Sherratt, T. and I. Harvey. 1993. Frequency-dependent food selection by arthropods: a review. Biol. J. Linn. Soc. 48: 167–186.CrossRefGoogle Scholar
  55. Siddique, A.B. and R.B. Chapman. 1987. Functional response of Pacific damsel bug, Nabis kinbergii (Hem.: Nabidae). Entomophaga 32: 303–309.CrossRefGoogle Scholar
  56. Statgraphics. 2010. Statgraphics Centurion XVI User Manual. StatPoint Technologies, Inc., Warrenton, VA.Google Scholar
  57. Stasek, D.J. 2009. Population Responses of a Generalist Insect Predator and its Prey to Patch Characteristics in Forage Crops. PhD Dissertation. Faculty of Miami University, FL.Google Scholar
  58. Toft, S. and D.H. Wise. 1999. Behavioral and ecophysiological responses of a generalist predator to single- and mixed-species diets of dfferent quality. Oecologia 119: 198–207.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Ulusoy, M.R. and S. Ulgenturk. 2003. The natural enemies of whiteflies (Hem.: Aleyrodidae) in southern Anatolia. Zool. Middle East 28: 119–124.CrossRefGoogle Scholar
  60. Vila, E. and T. Cabello. 2014. Biosystems engineering applied to greenhouse pest control. In: I. Torres and R. Guevara (eds.), Biosystems Engineering: Biofactories for Food Production in the XXI Century. Springer, Berlin. pp. 99–128.CrossRefGoogle Scholar
  61. Wade M.R., M.P. Zalucki and B.A. Franzmann. 2005. Influence of observer presence on Pacific damsel bug behavior: who is watching whom? J. Insect Behav. 18: 651–667.CrossRefGoogle Scholar
  62. Wagner, J.D. and D.H. Wise. 1996. Cannibalism regulates densities of young wolf spiders: evidence from field and laboratory experiments. Ecology 77: 639–652.CrossRefGoogle Scholar
  63. Weber, M.J., J.M. Dettmers, D.H. Wahl and S.J. Czesny. 2010. Effects of predator-prey interactions and benthic habitat complexity on selectivity of a foraging generalist. T. Am. Fish. Soc. 139: 1004–1013.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2017

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • F. J. Fernandez-Maldonado
    • 1
  • J. R. Gallego
    • 1
  • A. Valencia
    • 1
  • M. Gamez
    • 2
    Email author
  • Z. Varga
    • 3
  • J. Garay
    • 4
  • T. Cabello
    • 1
  1. 1.Department of Biology and GeologyUniversity of AlmeriaAlmeriaSpain
  2. 2.Department of MathematicUniversity of AlmeriaAlmeriaSpain
  3. 3.Institute of Mathematics and InformaticsSzent Istvan UniversityGödöllőHungary
  4. 4.Department of Plant Systematics, Ecology and Theoretical BiologyL. Eötvös UniversityBudapestHungary

Personalised recommendations