Community Ecology

, Volume 17, Issue 1, pp 48–60 | Cite as

Trophic models and short-term dynamic simulations for benthic-pelagic communities at Banco Chinchorro Biosphere Reserve (Mexican Caribbean): a conservation case

  • F. A. Rodríguez-ZaragozaEmail author
  • M. Ortiz
  • F. Berrios
  • L. Campos
  • A. de Jesús-Navarrete
  • J. Castro-Pérez
  • A. Hernández-Flores
  • M. García-Rivas
  • F. Fonseca-Peralta
  • E. Gallegos-Aguilar


Banco Chinchorro is the largest reef in the Mexican Caribbean. Historically, spiny lobster, queen conch and over 20 other reef species have been exploited here. Multispecies intervention management from an ecosystem perspective has been developed in this area; however, an assessment of the effects of such practices on ecosystem health is required. Five quantitative trophic models were constructed using Ecopath with Ecosim. The results show that, in terms of biomass, benthic autotrophs are the dominant group in all communities. Ecosystem Network Analysis indices showed that Cueva de Tiburones was the most mature, developed, complex and healthy subsystem, but, El Colorado and La Baliza were the subsystems most resistant to disturbances. The fisheries mainly concentrate on primary (La Baliza and Cueva de Tiburones sites) and secondary consumers (La Caldera, Chancay, and El Colorado). The greatest propagation of direct and indirect effects, estimated by Mixed Trophic Impacts and Ecosim simulations, were generated by the benthic autotrophs, small benthic epifauna, benthic-pelagic carnivorous fish and benthic carnivorous fish, among others. In contrast, the System Recovery Time showed different patterns among subsystems, indicating several compartments that reduce resilience. Considering the structure, dynamics, trophic functioning and ecosystem health of Banco Chinchorro, its ecological heterogeneity highlights the need for the design of a specific (by subsystem) management strategy, particularly because different species or functional groups present greater sensitivity to human interventions in each community.


Coral reef Ecopath with Ecosim Network properties Trophic dynamics 



Ecosystem-Based Fisheries Management


Mesoamerican Barrier Reef System


Mixed Trophic Impacts


Redundancy Analysis ordination


Permutational Multivariate Analysis of Variance


System Recovery Time


Total System Throughput


Humann and DeLoach (2013a,b) Robertson et al. ( 2015) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42974_2016_1701048_MOESM1_ESM.pdf (209 kb)
Supplementary material, approximately 214 KB.
42974_2016_1701048_MOESM2_ESM.pdf (18 kb)
Supplementary material, approximately 19 KB.
42974_2016_1701048_MOESM3_ESM.pdf (88 kb)
Supplementary material, approximately 90 KB.
42974_2016_1701048_MOESM4_ESM.pdf (63 kb)
Supplementary material, approximately 65 KB.
42974_2016_1701048_MOESM5_ESM.pdf (703 kb)
Supplementary material, approximately 720 KB.
42974_2016_1701048_MOESM6_ESM.pdf (168 kb)
Supplementary material, approximately 172 KB.
42974_2016_1701048_MOESM7_ESM.pdf (202 kb)
Supplementary material, approximately 207 KB.


  1. Acosta-González, G., F.A. Rodríguez-Zaragoza, R.C. Hernández-Landa and J.E. Arias-González. 2013. Additive diversity partitioning of fish in a Caribbean coral reef undergoing shift transition. PLoS ONE 8(6): e65665. doi:10.1371/journal. pone.0065665.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ainsworth, C.H., D.A. Varkey and T.J. Pitcher. 2008. Ecosystem simulations supporting ecosystem-based fisheries management in the Coral Triangle, Indonesia. Ecol. Model. 214: 361–374.CrossRefGoogle Scholar
  3. Arias-González, J.E. and S. Morand. 2006. Trophic functioning with parasites: a new insight for ecosystem analysis. Mar. Ecol. Prog. Ser. 320: 43–53.CrossRefGoogle Scholar
  4. Arias-González, J.E., B. Delesalle, B. Salvat and R. Galzin. 1997. Trophic functioning of the Tiahura sector “Moorea Island, French Polynesia”. Coral Reefs 16: 231–246.CrossRefGoogle Scholar
  5. Arias-González, J.E., E. Nuñez-Lara, C. González-Salas and R. Galzin. 2004 Trophic models for investigation of fishing effect on coral reef ecosystems. Ecol. Model. 172: 197–212.CrossRefGoogle Scholar
  6. Arias-González, J.E., C. González-Gándara , J.L. Cabrera and V. Christensen. 2011. Predicted impact of the invasive lionfish Pterois volitans on the food web of a Caribbean coral reef. Environ. Res. 111: 917–925.CrossRefGoogle Scholar
  7. Begon, M., J.L. Harper and C.R. Townsend. 1990. Ecology: Individuals, Populations and Communities. 2nd ed. Blackwell Scientific Publications, Oxford.Google Scholar
  8. Beltrán-Torres, A.U. and J.P. Carricart-Ganivet. 1999. Lista revisada y clave para los corales pétreos zooxantelados (Hydrozoa: Milleporina; Anthozoa: Scleractinia) del Atlántico mexicano. Rev. Biol. Trop. 47: 813–829.Google Scholar
  9. Beltrán-Torres, A.U., Muñoz-Sánchez L. and Carricart-Ganivet J.P. 2003. Effects of hurricane Keith at a patch reef on Banco Chinchorro, Mexican Caribbean. Bull. Mar. Sci. 73(1): 187–196.Google Scholar
  10. Bondavalli, C., A. Bodini, G. Rossetti and S. Allesina. 2006. Detecting stress at the whole-ecosystem level: the case of a mountain lake (Lake Santo, Italy). Ecosystems 9: 768–787.CrossRefGoogle Scholar
  11. Cáceres I., Ortiz M., Cupul-Magala A.L. and Rodríguez-Zaragoza F.A. 2016. Trophic models and short-term simulations for the coral reefs of Cayos Cochinos and Media Luna (Honduras): a comparative network analysis, ecosystem development, resilience and fishery. Hydrobiologia 770: 209–224.CrossRefGoogle Scholar
  12. Chávez, E.A. and E. Hidalgo. 1987. Los arrecifes coralinos del Caribe noroccidental y Golfo de México en el contexto socioecónomico. An. Inst. Cienc. Mar Limnol. UNAM 15: 167–176.Google Scholar
  13. Christensen, V. 1995. Ecosystem maturity-toward quantification. Ecol. Model. 77: 3–32.CrossRefGoogle Scholar
  14. Christensen, V. and D. Pauly. 1992. Ecopath II: a software for balancing steady-state ecosystem models and calculating network characteristics. Ecol. Model. 61: 169–185.CrossRefGoogle Scholar
  15. Christensen, V. and D. Pauly. 1993. Flow characteristics of aquatic ecosystem. In: Christensen, V. and D. Pauly (eds), Trophic Models of Aquatic Ecosystems. ICLARM Conf. Proc. 26: 338–352.Google Scholar
  16. Christensen, V. and C. Walters. 2004. Ecopath with Ecosim: methods, capabilities and limitations. Ecol. Model. 172: 109–139.CrossRefGoogle Scholar
  17. Costanza, R., M. Mageau and B. Norton. 1998. Patten B Predictors of Ecosystem Health. In: Rapport, D., R. Costanza, P. Epstein, C. Gaudet and R. Levins (eds), Ecosystem Health. Blackwell Science: MA, pp. 240–250.Google Scholar
  18. Cruz-Piñón, G., J.P. Carricart-Ganivet and J. Espinosa-Avalos. 2003. Monthly skeletal extension rates of the hermatypic corals Montastraea annularis and Montastraea faveolata: biological and environmental controls. Mar. Biol. 143: 491–500.CrossRefGoogle Scholar
  19. de Jesús-Navarrete, A., A. Medina-Quej and J.J. Oliva-Rivera. 2003. Changes in the queen conch (Strombus gigas L.) population structure at Banco Chinchorro, Quintana Roo, México, 1990–1997. Bull. Mar. Sci. 73: 219–229.Google Scholar
  20. Francis, R., M. Hixon, M. Clarke, S. Murawski and S. Ralston. 2007. Ten commandments for ecosystem-based fisheries scientists. Fisheries 32: 217–233.CrossRefGoogle Scholar
  21. González, A., D. Torruco-Gomez, A. Liceaga-Correa and J. Ordaz. 2003. The shallow and deep bathymetry of the Banco Chinchorro reef in the Mexican Caribbean. Bull. Mar. Sci. 73: 15–22.Google Scholar
  22. Guénette, S., V. Christensen and D. Pauly. 2008. Trophic modelling of the Peruvian upwelling ecosystem: towards reconciliation of multiples datasets. Prog. Oceanogr. 79: 326–335.CrossRefGoogle Scholar
  23. Holling, C.S. 1973. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4: 1–23.CrossRefGoogle Scholar
  24. Hughes, T.P. 1994. Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265: 1547–1551.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hughes, T.P., A.M. Szmant, R. Steneck, R. Carpenter and S. Miller. 1999. Algal blooms on coral reefs: What are the causes? Limnol. Oceanogr. 44(6): 1583–1586.CrossRefGoogle Scholar
  26. Hughes, T.P., A.H. Baird, D.R. Bellwood, M. Card, S.R. Connolly, C. Folke, R. Grosberg, O. Hoegh-Gulberg, J.B.C. Jackson, J. Kleypas, J.M. Lough, P. Marshall, N. Myström, S.R. Palumbi, J.M. Pandolf, B. Rosen and J. Roughgarden. 2003. Climate change, human impacts, and the resilience of coral reefs. Science 301: 929–933.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Humann, P. and DeLoach N. 2013a. Reef Coral Identification: Florida, Caribbean, Bahamas. 3rd Edition New World Publications Press. Florida, USA.Google Scholar
  28. Humann, P. and DeLoach N. 2013b. Reef Creature Identification: Florida Caribbean Bahamas. 3rd Edition New World Publications Press. Florida, USA.Google Scholar
  29. INE. 2000. Programa de Manejo Reserva Banco Chinchorro. Instituto Nacional de Ecología, MéxicoGoogle Scholar
  30. Jackson, J.B.C., M.X. Kirby, W.H. Berger, K.A. Bjordal, L.W. Botsford, B.J. Bourque, R.H. Bradbury, R. Cooke, J. Erlandson, J.A. Estes, T.P. Hughes, S. Kidwell, C.B. Lange, H.S. Lenihan, J.M. Pandolfi, C.H. Peterson, R.S. Steneck, M.J. Tegner and R.R. Warner. 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science 293: 629–638.CrossRefGoogle Scholar
  31. Jones, C., J. Lawton and M. Shachak. 1994. Organism as ecosystem engineers. Oikos 69: 373–386.CrossRefGoogle Scholar
  32. Jordán, E. and E. Martín. 1987. Banco Chinchorro: morphology and composition of a caribbean atoll. Atoll. Res. Bull. 310: 1–25.CrossRefGoogle Scholar
  33. Jordán, F., M. Scotti, Á. Mike and M. Ortiz. 2014. Strong asymmetrical inter-specific relationships in food web simulations. Mar. Ecol. Prog. Ser. 512: 89–98.CrossRefGoogle Scholar
  34. Lapointe, B.E. 1997. Nutrient thresholds for bottom-up control of macroalgal blooms on coral reefs in Jamaica and southest Florida. Limnol. Oceanogr. 42: 1119–1131.CrossRefGoogle Scholar
  35. Levins, R. 1968. Evolution in Changing Enviroments. Princeton University, Princeton NJ.Google Scholar
  36. Levins, R. and R. Lewontin. 1985. The Dialectical Biologist. Harvard University, MA.Google Scholar
  37. Liu, P.J., S. Kwang-Tsao, J. Rong-Quen, F. Tung-Yung, W. Saou-Lien, H. Jiang-Shiou, C. Jen-Ping, C. Chung-Chi and L. Hsing-Juh. 2009. A trophic model of fringing coral reefs in Nanwan Bay, southern Taiwan suggests overfishing. Mar. Environ. Res. 68: 106–117.CrossRefGoogle Scholar
  38. Melbourne-Thomas, J., C.R. Johnson and E.A. Fulton. 2011. Regional-scale scenario analysis for the Meso-American Reef system: modelling coral reef futures under multiple stressors. Ecol. Model. 222: 1756–1770.CrossRefGoogle Scholar
  39. Merino-Ibarra, M. 1986. Aspectos de la circulación costera super-ficial del Caribe mexicano con base en observaciones utilizando tarjetas de deriva. An. Inst. Cienc. Mar Limnol. UNAM 13: 31–46.Google Scholar
  40. Monaco, M., R. Ulanowicz. 1997. Comparative ecosystem trophic structure of three U.S. mid-Atlantic estuarios. Mar. Ecol. Prog. Ser. 161: 239–254.CrossRefGoogle Scholar
  41. Okey, T.A., S. Banks, A.F. Born, R.H. Bustamante, M. Calvopiña, J.E. Graham, E. Espinoza, J.M. Fariña, L.E. Garske, G.K. Recke, S. Salazar, S. Shepherd, V. Toral-Granda and P. Wallem. 2004. A trophic model of a Galápagos subtidal rocky reef for evaluating fisheries and conservation strategies. Ecol. Model. 172: 383–401.CrossRefGoogle Scholar
  42. Opitz, S. 1996. Trophic Interactions in Caribbean Coral Reefs. ICLARM, Manila, Philippines.Google Scholar
  43. Ortiz, M. 2008. Mass balanced and dynamics simulations of trophic models of kelp ecosystems near the Mejillones Peninsula of northern Chile (SE Pacific): comparative network structure and assessment of harvest strategies. Ecol. Model. 216: 31–46.CrossRefGoogle Scholar
  44. Ortiz, M., M. Avendaño, M. Cantillañez, F. Berrios and L. Campos. 2010. Trophic mass balanced models and dynamic simulations of benthic communities from La Rinconada Marine Reserve off northern Chile: network properties and multispecies harvest scenario assessments. Aquat. Conserv. Mar. Freshw. Ecosyst. 20: 58–73.CrossRefGoogle Scholar
  45. Ortiz, M., R. Levins, L. Campos, F. Berrios, F. Campos, F. Jordán, J. González and F.A. Rodríguez-Zaragoza. 2013 Identifying keystone trophic groups in benthic ecosystems: implications for fisheries Management. Ecol. Indic. 25: 133–140.Google Scholar
  46. Ortiz, M., L. Campos, F. Berrios, F.A. Rodríguez-Zaragoza, B. Hermosillo and J. González. 2015. Mass balanced trophic models and short-term dynamical simulations for benthic ecological systems of Mejillones and Antofagasta bays (SE Pacific): comparative network structure and assessment of human impacts. Ecol. Model. 309-310: 153–152.CrossRefGoogle Scholar
  47. Pauly, D., V. Christensen, J. Dalsgaard, R. Froese and F. Torres. 1998. Fishing down marine food webs. Science 279: 860–863.CrossRefGoogle Scholar
  48. Pauly, D., V. Christensen, S. Guénette, T.J. Pitcher, U.R. Sumaila, C.J. Walters, R. Watson and D. Zeller. 2002. Towards sustainability in world fisheries. Nature 418: 689–695.CrossRefGoogle Scholar
  49. Pimm, S.L. 1982. Food Webs. Chapman and Hall, NY, USA.CrossRefGoogle Scholar
  50. Polovina, J.J. 1984. Model of a coral reef ecosystem: I the Ecopath model and its application to French Frigate Shoals. Coral Reefs 3: 1–11.CrossRefGoogle Scholar
  51. Robertson, D.R., Peña E.A., Posada J.M. and Claro R. 2015. Shorefishes of the Greater Caribbean: online information system. Version 1.0 Smithsonian Tropical Research Institute, Balboa, Panamá.Google Scholar
  52. Rodríguez-Zaragoza, F.A. 2007. Biodiversidad y funcionamiento de los ecosistemas arrecifales costeros del Caribe mexicano. Ph.D. thesis, Centro de Investigación y Estudios Avanzados, Unidad-Mérida, México, 344 pp.Google Scholar
  53. Rodríguez-Zaragoza, F.A., A.L. Cupul-Magaña, C.M. Galván-Villa, E. Ríos-Jara, E.g., Robles-Jarero, E. López-Uriarte and J.E. Arias-González. 2011. Additive partitioning of reef fish diversity variation: a promising marine biodiversity management tool. Biodivers. Conserv. 20: 1655–1675.CrossRefGoogle Scholar
  54. Rodríguez-Zaragoza, F.A. and J.E. Arias-González. 2015. Coral biodiversity and bio-construction in the northern sector of the Mesoamerican reef system. Front. Mar. Sci. 2: 13. doi: 10.3389/ fmars.2015.00013.CrossRefGoogle Scholar
  55. Ricker, W. E. 1968. Food from the sea. In: Committee on Resources and Man (eds), Resource and Man. US National Academy of Sciences, Chap 5. W. H. Freeman, San Francisco, pp. 87–108.Google Scholar
  56. Scotti, M., N. Gjata, C. Livi and F. Jordán. 2012. Dynamical effects of weak trophic interactions in a stochastic food web simulation. Community Ecol. 13: 230–237.CrossRefGoogle Scholar
  57. Sosa-Cordero, E. 2003. Trends and dynamics of the spiny lobster, Panulirus argus, resource in Banco Chinchorro, Mexico. Bull. Mar. Sci. 73: 203–217.Google Scholar
  58. Taylor, M.H., M. Wolff, J. Mendo and C. Yamashiro. 2008. Changes in trophic flow structure of Independence Bay (Peru) over an ENSO cycle. Prog. Oceanogr. 79: 336–351.CrossRefGoogle Scholar
  59. Ulanowicz, R. 1986. Growth and Development: Ecosystems Phenomenology. Springer, NY.Google Scholar
  60. Ulanowicz, R. 1997. Ecology, the Ascendant Perspective. Complexity in Ecological Systems Series. NY. Columbia University Press.Google Scholar
  61. Ulanowicz, R. and Ch. Puccia.1990. Mixed trophic impacts in eco-systems. Ceonoses 5: 7–16.Google Scholar
  62. Vega-Cendejas, M.E. and F. Arreguín-Sánchez. 2001. Energy fluxes in a mangrove ecosystem from a coastal lagoon in Yucatan Peninsula, Mexico. Ecol. Model. 137: 119–133.CrossRefGoogle Scholar
  63. Vega-Zepeda, A., H. Hernández-Arana and J.P. Carricart-Ganivet. 2007. Spatial and size-frequency distribution of Acropora (Cnidaria: Scleractinia) species in Chinchorro Bank, Mexican Caribbean: implications for management. Coral Reefs 26: 671–676.CrossRefGoogle Scholar
  64. Villegas-Hernández, H., C. González-Salas, A. Aguilar-Perera and A.J. López-Gómez. 2008. Settlement dynamics of the coral reef fish Stegastes partitus, inferred from otolith shape and microstructure analysis. Aquat. Biol. 1: 249–258.CrossRefGoogle Scholar
  65. Walters, C.J., V. Christensen and D. Pauly. 1997. Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments. Rev. Fish. Biol. Fish. 7: 139–172.CrossRefGoogle Scholar
  66. Walter, C.J., D. Pauly, V. Christensen and J. Kitchell. 1999. Representing density dependent consequences of the life history strategies in aquatic ecosystems: ECOSIM II. Ecosystems 3: 70–83.CrossRefGoogle Scholar
  67. Weijerman, M., E.A. Fulton and F.A. Parrish. 2013. Comparison of coral reef ecosystems along a fishing pressure gradient. PLoS ONE 8(5):e63797. doi: 10.1371/journal.pone.0063797.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • F. A. Rodríguez-Zaragoza
    • 1
    Email author
  • M. Ortiz
    • 2
  • F. Berrios
    • 2
  • L. Campos
    • 2
  • A. de Jesús-Navarrete
    • 3
  • J. Castro-Pérez
    • 4
  • A. Hernández-Flores
    • 5
  • M. García-Rivas
    • 6
  • F. Fonseca-Peralta
    • 6
  • E. Gallegos-Aguilar
    • 6
  1. 1.Depto. de Ecología, CUCBAUniversidad de GuadalajaraJalMéxico
  2. 2.Instituto Antofagasta, Instituto de Ciencias Naturales AvH, Facultad de Ciencias del Mar y Recursos BiológicosUniversidad de AntofagastaAntofagastaChile
  3. 3.ECOSUR-ChetumalChetumal, Q. RooMéxico
  4. 4.Inst. Tec. de ChetumalChetumal, Q. RooMéxico
  5. 5.CRIP, Instituto Nacional de Pesca, Carr. a ChelemYuc.México
  6. 6.Comisión Nacional de Áreas Naturales ProtegidasChetumal Q. RooMéxico

Personalised recommendations