Advertisement

Community Ecology

, Volume 17, Issue 1, pp 28–39 | Cite as

Traits in Lepidoptera assemblages are differently influenced by local and landscape scale factors in farmland habitat islands

  • F. SamuEmail author
  • C. Szabóky
  • A. Horváth
  • D. Neidert
  • M. Tóth
Article
  • 1 Downloads

Abstract

Semi-natural grassland islands have a key role in slowing down biodiversity decline in intensively cultivated agricultural landscapes. Assemblages in such habitat patches are not only limited by local habitat quality, but are also influenced by the suitability and distribution of different habitat types in the surrounding landscape. If we want to preserve a functionally diverse Lepidoptera fauna, both local and landscape scale environmental effects, including land use and management, should be considered. In the present study, we describe trait-based characteristics of noctuid dominated macro-moth assemblages (MMAs) in grassland remnants of an intensively cultivated agricultural area. By gathering environmental data from local to landscape scales, we aimed to identify the most influential scales, possible interactions between scales and the role of integrated arable fields in shaping MMAs. We conducted abundance weighted trait-based multivariate analysis of the assemblages based on six trait groups. Both local and landscape scale variables had important influence, acting on different traits of the assemblages. By variance partitioning, we could identify variables that exerted maximal effect at 50 m and 250 m radii circles. Variables describing local vegetation and identity of neighbouring crop were responsible for species richness and rarity status, while the area of arable and wooded habitats within 250 m were responsible for total catch and pest status related traits. There was significant interaction between principal components axes representing local and landscape variables. Rarity, more than other traits, was influenced by the interaction. Integrated fields had no effect on MMAs. The present study highlights the contributions of both local and landscape scales to the shaping of MMAs and suggests that the preservation of both local habitat quality and landscape heterogeneity are important if we would like to maintain species rich and functionally diverse Lepidoptera fauna.

Keywords

Agri-environmental scheme Baited trap Landscape use Macro-moth Scale dependent Trait-based 

Abbreviations

AES

Agri-Environmental Schemes

AES_Arabl

Arable fields in AES

Arabl

Arable fields

HumBott

Bottom Humidity

Meadw

Meadow habitats

MMA

noctuid dominated Macro-Moth Assemblage

NBcrop

Neighbouring crop

NBRic

Neighbourhood Richness

Physgn

Physiognomy

Shrub

Shrub dominance

Slope

Slope steepness

South

Southern exposition

SpecNumb

Number of Species

TotCatch

Total number of individuals caught

VegHgh

Vegetation Height

VegRic

Vegetation Richness

Wetl

Wetland

wMobil

abundance weighted Mobility score

Wood

Wooded habitats

wPest

abundance weighted Pest status score

wSize

abundance weighted body Size score

wVoltin

abundance weighted Voltinism score

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42974_2016_1701028_MOESM1_ESM.pdf (187 kb)
Supplementary material, approximately 192 KB.

References

  1. Axmacher, J.C., G. Brehm, A. Hemp, H. Tuente, H.V.M. Lyaruu, K. Mueller-Hohenstein and K. Fiedler. 2009. Determinants of diversity in afrotropical herbivorous insects (Lepidoptera: Geometridae): plant diversity, vegetation structure or abiotic factors? J. Biogeogr. 36:337–349.CrossRefGoogle Scholar
  2. Benton, T.G., D.M. Bryant, L. Cole and H.Q.P. Crick. 2002. Linking agricultural practice to insect and bird populations: a historical study over three decades. J. Appl. Ecol. 39:673–687.CrossRefGoogle Scholar
  3. Betzholtz, P.-E. and M. Franzen. 2011. Mobility is related to species traits in noctuid moths. Ecol. Entomol. 36:369–376.CrossRefGoogle Scholar
  4. Biesmeijer, J.C., S.P.M. Roberts, M. Reemer, R. Ohlemuller, M. Edwards, T. Peeters, A.P Schaffers, S.G. Potts, R. Kleukers, CD. Thomas, J. Settele and W.E. Kunin. 2006. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354.CrossRefGoogle Scholar
  5. Borcard, D., P. Legendre and P. Drapeau. 1992. Partialling out the spatial component of ecological variation. Ecology 73:1045–1055.Google Scholar
  6. Butler, S.J., L. Boccaccio, R.D. Gregory, P. Vorisek and K. Norris. 2010. Quantifying the impact of land-use change to European farmland bird populations. Agric. Ecosyst. Environ. 137:348–357.CrossRefGoogle Scholar
  7. Collinge, S.K., K.L. Prudic and J.C Oliver. 2003. Effects of local habitat characteristics and landscape context on grassland butterfly diversity. Cons. Biol. 17:178–187.CrossRefGoogle Scholar
  8. Ekroos, J., J. Heliola and M. Kuussaari. 2010. Homogenization of lepidopteran communities in intensively cultivated agricultural landscapes. J. Appl. Ecol. 47:459–467.CrossRefGoogle Scholar
  9. Ekroos, J. and M. Kuussaari. 2012. Landscape context affects the relationship between local and landscape species richness of butterflies in semi-natural habitats. Ecography 35:232–238.CrossRefGoogle Scholar
  10. Facey, S.L., M.S. Botham, M.S. Heard, R.F. Pywell and J.T. Staley 2014. Moth communities and agri-environment schemes: Examining the effects of hedgerow cutting regime on diversity, abundance, and parasitism. Insect Conserv. Divers. 7:543–552.CrossRefGoogle Scholar
  11. Fischer, J. and D.B. Lindenmayer. 2007. Landscape modification and habitat fragmentation: a synthesis. Global Ecol. Biogeogr. 16:265–280.CrossRefGoogle Scholar
  12. Fuentes-Montemayor, E., D. Goulson and K.J. Park. 2011. The effectiveness of agri-environment schemes for the conservation of farmland moths: assessing the importance of a landscape-scale management approach. J. Appl. Ecol. 48:532–542.CrossRefGoogle Scholar
  13. Gagic, V., I. Bartomeus, T. Jonsson, A. Taylor, C. Winqvist, C. Fischer, E.M. Slade, I. Steffan-Dewenter, M. Emmerson, S.G. Potts, T. Tscharntke, W. Weisser and R. Bommarco. 2015. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proc. R. Soc. B 282:20142620.CrossRefGoogle Scholar
  14. Gonthier, D.J., K.K. Ennis, S. Farinas, H.Y. Hsieh, A.L. Iverson, P. Batary, J. Rudolphi, T. Tscharntke, B.J. Cardinale and I. Perfecto. 2014. Biodiversity conservation in agriculture requires a multiscale approach. Proc. R. Soc. B 281:8.CrossRefGoogle Scholar
  15. Grand, J. and M.J. Mello. 2004. A multi-scale analysis of species-environment relationships: rare moths in a pitch pine-scruboak (Pinus rigida-Quercus ilicifolia) community. Biol. Cons. 119:495–506.CrossRefGoogle Scholar
  16. Harris, M.K., J.G. Millar and A.E. Knutson. 1997. Pecan nut case-bearer (Lepidoptera: Pyralidae) sex pheromone used to monitor phenology and estimate effective range of traps. J. Econ. Entomol. 90:983–987.CrossRefGoogle Scholar
  17. Heikkinen, R.K., M. Luoto, M. Kuussaari and J. Pöyry. 2005. New insights into butterfly-environment relationships using partitioning methods. Proc. R. Soc. B 272:2203–2210.CrossRefGoogle Scholar
  18. Highland, S.A., J.C. Miller and J.A. Jones. 2013. Determinants of moth diversity and community in a temperate mountain landscape: vegetation, topography, and seasonality. Ecosphere 4: article 129.Google Scholar
  19. Hungarian Ministry of Agriculture. 2009. Környezetkímélő gazdálkodás: Tájékoztató az Új Magyarország Vidékfejlesztési Program agrár-környzetgazdálkodási támogatásáról [Environmental friendly management: Information about agri-environmental subsidies as part of the “New Hungary Rural Development Program”] http://www.umvp.eu/sites/default/files/akg_tajekoztato_fuzet.pdf. New Hungary Rural Development Program, Budapest.
  20. Ishii, T., K. Nakamura, K. Kawasaki, H. Nemoto, K. Takahashi and A. Kubota. 1981. Active space of sex pheromone of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Yponomeutidae). Jap. J. Appl. Entomol. Zool. 25:71–76.CrossRefGoogle Scholar
  21. Jammalamadaka, S.R. and A. SenGupta. 2001. Topics in Circular Statistics. World Scientific, Singapore.Google Scholar
  22. Jonason, D., G.K.S. Andersson, E. Öckinger, H.G. Smith and J. Bengtsson. 2012. Field scale organic farming does not counteract landscape effects on butterfly trait composition. Agric. Ecosyst. Environ. 158:66–71.CrossRefGoogle Scholar
  23. Kleijn, D. and W.J. Sutherland. 2003. How effective are European agri-environment schemes in conserving and promoting biodiversity? J. Appl. Ecol. 40:947–969.CrossRefGoogle Scholar
  24. Kormann, U., V. Rösch, P. Batáry, T. Tscharntke, K.M. Orci, F. Samu and C. Scherber. 2015. Local and landscape management drive trait-mediated biodiversity of nine taxa on small grassland fragments. Divers. Distrib. 21:1204-1217.CrossRefGoogle Scholar
  25. Krauss, J., I. Steffan-Dewenter and T. Tscharntke. 2003. How does landscape context contribute to effects of habitat fragmentation on diversity and population density of butterflies? J. Biogeogr 30:889–900.CrossRefGoogle Scholar
  26. Leps, J. and P. Smilauer. 2003. Multivariate Analysis of Ecological Data using CANOCO. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  27. Liivamagi, A., V. Kuusemets, T. Kaart, J. Luig and I. Diaz-Forero. 2014. Influence of habitat and landscape on butterfly diversity of semi-natural meadows within forest-dominated landscapes. J. Insect Conserv. 18:1137–1145.CrossRefGoogle Scholar
  28. Meehan, T.D., J. Glassberg and C. Gratton. 2013. Butterfly community structure and landscape composition in agricultural landscapes of the central United States. J. Insect Conserv. 17:411–419.CrossRefGoogle Scholar
  29. Merckx, T. and E.M. Slade. 2014. Macro-moth families differ in their attraction to light: implications for light-trap monitoring programmes. Insect Conserv. Divers. 7:453–461.CrossRefGoogle Scholar
  30. Mortelliti, A., G. Amori and L. Boitani. 2010. The role of habitat quality in fragmented landscapes: a conceptual overview and prospectus for future research. Oecologia 163:535–547.CrossRefGoogle Scholar
  31. Öckinger, E., K.O Bergman, M. Franzén, T. Kadlec, J. Krauss, M. Kuussaari, J. Pöyry, H.G. Smith, I. Steffan-Dewenter and R. Bommarco. 2012. The landscape matrix modifies the effect of habitat fragmentation in grassland butterflies. Landsc. Ecol. 27:121–131.CrossRefGoogle Scholar
  32. Öckinger, E. and H.G. Smith. 2006. Landscape composition and habitat area affects butterfly species richness in semi-natural grasslands. Oecologia 149:526–534.CrossRefGoogle Scholar
  33. Perović, D., S. Gámez-Virués, C. Börschig, A.-M. Klein, J. Krauss, J. Steckel, C. Rothenwöhrer, S. Erasmi, T. Tscharntke and C. Westphal. 2015. Configurational landscape heterogeneity shapes functional community composition of grassland butterflies. J. Appl. Ecol. 52:505–513.CrossRefGoogle Scholar
  34. Pöyry, J., J. Paukkunen, J. Heliölä and M. Kuussaari. 2009. Relative contributions of local and regional factors to species richness and total density of butterflies and moths in semi-natural grasslands. Oecologia 160:577–587.CrossRefGoogle Scholar
  35. Quetier, F., S. Lavorel, W. Thuiller and I. Davies. 2007. Plant-trait-based modeling assessment of ecosystem-service sensitivity to land-use change. Ecol. Appl. 17:2377–2386.CrossRefGoogle Scholar
  36. Robinson, N, T. Kadlec, M.D. Bowers and R.P. Guralnick. 2014. Integrating species traits and habitat characteristics into models of butterfly diversity in a fragmented ecosystem. Ecol. Model. 281:15–25.CrossRefGoogle Scholar
  37. Rundlöf, M. and H.G. Smith. 2006. The effect of organic farming on butterfly diversity depends on landscape context. J. Appl. Ecol. 43:1121–1127.CrossRefGoogle Scholar
  38. Saunders, D.A., R.J. Hobbs and C.R. Margules. 1991. Biological consequences of ecosystem fragmentation - a review. Cons. Biol. 5:18–32.CrossRefGoogle Scholar
  39. Slancarova, J., J. Benes, M. Kristynek, P. Kepka and M. Konvicka. 2014. Does the surrounding landscape heterogeneity affect the butterflies of insular grassland reserves? A contrast between composition and configuration. J. Insect Conserv. 18:1–12.CrossRefGoogle Scholar
  40. Smilauer, P. and J. Leps. 2014. Multivariate Analysis of Ecological Data using CANOCO 5. Cambridge University Press, Cambridge.Google Scholar
  41. Southwood, T.R.E. and PA. Henderson. 2000. Ecological Methods. Blackwell Science, Oxford.Google Scholar
  42. Subchev, M., T. Toshova, M. Toth, E. Voigt, J. Mikulas and W. Francke. 2004. Catches of vine bud moth Theresimima ampellophaga (Lep., Zygaenidae: Procridinae) males in pheromone traps: effect of the purity and age of baits, design, colour and height of the traps, and daily sexual activity of males. J. Appl. Entomol. 128:44–50.CrossRefGoogle Scholar
  43. ter Braak, C.J.F. and P. Smilauer. 2012. Canoco reference manual and user’s guide: software for ordination (version 5.0). Microcomputer Power, Ithaca, NY, USA.Google Scholar
  44. Thomas, J.A., N.A.D. Bourn, R.T Clarke, K.E. Stewart, D.J. Simcox, G.S. Pearman, R. Curtis and B. Goodger. 2001. The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc. R. Soc. B 268:1791–1796.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Tóth, M., Z. Imrei and G. Szőcs. 2000. Ragacsmentes, nem telítődő, nagy fogókapacitású új feromonos csapdák kukoricabogárra (Diabrotica virgifera virgifera, Coleoptera: Chrysomeldiae) és gyapottok-bagolylepkére (Helicoverpa (Heliothis) armigera, Lepidoptera: Noctuidae) [Non-sticky, non-saturable, high capacity new pheromone traps for Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) and Helicoverpa (Heliothis) armigera (Lepidoptera: Noctuidae)]. Integrált Termesztés a Kertészeti és Szántóföldi Kultúrákban 21:44–49.Google Scholar
  46. Tóth, M., V. Répási and G. Szőcs. 2002. Chemical attractants for females of pest pyralids and phycitids (Lepidoptera: Pyralidae, Phycitidae). Acta Phytopathol. Entomol. Hung. 37:375–384.CrossRefGoogle Scholar
  47. Tóth, M., I. Sivcev, I. Ujváry, I. Tomasek, Z. Imrei, P. Horváth and I. Szarukán. 2003. Development of trapping tools for detection and monitoring of Diabrotica v. virgifera in Europe. Acta Phytopathol. Entomol. Hung. 38:307–322.CrossRefGoogle Scholar
  48. Tóth, M., I. Szarukán, B. Dorogi, A. Gulyás, P. Nagy and Z. Rozgonyi. 2010. Male and female noctuid moths attracted to synthetic lures in Europe. J. Chem. Ecol. 36:592–598.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Tuck, S.L., C. Winqvist, F. Mota, J. Ahnstrom, L.A. Turnbull and J. Bengtsson. 2014. Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J. Appl. Ecol. 51:746–755.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Uehara-Prado, M., K.S. Brown and A.V.L. Freitas. 2007. Species richness, composition and abundance of fruit-feeding butterflies in the Brazilian Atlantic Forest: comparison between a fragmented and a continuous landscape. Global Ecol. Biogeogr. 16:43–54.CrossRefGoogle Scholar
  51. van Swaay, C, M. Warren and G. Lois. 2006. Biotope use and trends of European butterflies. J. Insect Conserv. 10:189–209.CrossRefGoogle Scholar
  52. Violle, C, M.-L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel and E. Garnier. 2007. Let the concept of trait be functional! Oikos 116:882–892.CrossRefGoogle Scholar
  53. Wagner, D.L., M.W. Nelson and D.F. Schweitzer. 2003. Shrubland Lepidoptera of southern New England and southeastern New York: ecology, conservation, and management. For. Ecol. Manage. 185:95–112.CrossRefGoogle Scholar
  54. Wall, C. and J.N. Perry. 1987. Range of action of moth sex-attractant sources. Entomol. Exp. Appl. 44:5–14.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • F. Samu
    • 1
    Email author
  • C. Szabóky
    • 2
  • A. Horváth
    • 3
  • D. Neidert
    • 1
  • M. Tóth
    • 1
  1. 1.Plant Protection Institute, Centre for Agricultural ResearchHungarian Academy of SciencesBudapestHungary
  2. 2.Self employmentBudapestHungary
  3. 3.Institute of Botany, Centre for Ecological ResearchHungarian Academy of SciencesVácrátótHungary

Personalised recommendations