Community Ecology

, Volume 17, Issue 1, pp 8–16 | Cite as

Regional-scale vegetation heterogeneity in northeastern Patagonia: Environmental and spatial components

  • A. J. BisigatoEmail author
  • L. A. Hardtke
  • H. F. del Valle
  • P. J. Bouza
  • R. G. Palacio


Our aim was to describe vegetation heterogeneity at a regional scale in northeastern Patagonia and to identify the environmental variables associated to it. The study area encompasses 13 144 km2 and is characterized by a mixture of species typical of Patagonian steppes and Monte Desert. We performed 48 vegetation relevés, which were randomly assigned to a training set and to a validation set (32 and 16 relevés, respectively). Training set was subjected to cluster analysis, which allowed the identification of two plant communities one related to Patagonian steppes and another to the Monte desert. We derived 3 attributes of the seasonal curve of the NDVI as indicators of ecosystem function: the seasonal amplitude (SA), the date of the maximum (DOM), and the large seasonal integral (LSI). We explored the relationship between NDVI attributes and communities by classification tree analysis. LSI was the strongest predictor among NDVI attributes, separating both communities without misclassification errors. Patagonian steppes occupy areas with higher LSI. The partial RDA analysis explained 38.1% of total data variation, of which 16.5% was ascribed to environment, 7.9% to space, and 13.7% to spatial component of environment. Patagonian steppes are closer to the coast, in areas exhibiting higher annual precipitation and lower annual temperature range than Monte deserts. Our results indicate the occurrence of two plant communities in the study area and highlight the significance of climatic variables to explain their spatial distribution. As most scenarios of future climate predict greater annual thermal amplitude in the study area, the limit between both communities could be displaced eastward.


Monte desert Patagonian steppe Precipitation Spatial autocorrelation Temperature 



Classification Tree


Digital Elevation Model


Date Of Maximum NDVI


Indicator Value


Large Seasonal Integral of NDVI


Mean Annual Temperature


Normalized Difference Vegetation Index


Principal Coordinates of Neighbor Matrices




Redundancy Analysis


Seasonal NDVI Amplitude




Flora Argentina ( 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42974_2016_1701008_MOESM1_ESM.pdf (148 kb)
Supplementary material, approximately 151 KB.


  1. Abraham, E., H.F. del Valle, F. Roig, L. Torres, J.O. Ares, F. Coronato and R. Godagnone. 2009. Overview of the geography of the Monte Desert biome (Argentina). J. Arid. Environ. 73: 144–153.CrossRefGoogle Scholar
  2. Ares, J., H. del Valle and A. Bisigato. 2003. Detection of process-related changes in plant patterns at extended spatial scales during early dryland desertification. Global Change Biol. 9: 1643–1659.CrossRefGoogle Scholar
  3. Baruch, Z. 2005. Vegetation-environment relationships and classification of the seasonal savannas in Venezuela. Flora 200: 49–64.CrossRefGoogle Scholar
  4. Beeskow, A.M., H.F. del Valle HF and C.M. Rostagno. 1987. Los sistemas fisiográficos de la región árida y semiárida de la Provincia del Chubut. Secretaría de Ciencia y Tecnología: Bariloche, Argentina.Google Scholar
  5. Beeskow, A.M., N.O. Elissalde and C.M. Rostagno. 1995. Ecosystem changes associated with grazing intensity on the Punta Ninfas rangelands of Patagonia, Argentina. J. Range Manage. 48: 517–522.CrossRefGoogle Scholar
  6. Bergamin, R.S., S. Müller and R.S.P. Mello. 2012. Indicator species and foristic patterns in different forest formations in southern Atlantic rainforests of Brazil. Community Ecol. 13: 162–170.CrossRefGoogle Scholar
  7. Bisigato, A.J. and M.B. Bertiller. 1997. Grazing effects on patchy dryland vegetation in northern Patagonia. J. Arid Environ. 36: 639–653.CrossRefGoogle Scholar
  8. Bisigato, A.J. and M.B. Bertiller. 2004. Temporal and micro-spatial patterning of seedling establishment. Consequences for patch dynamics in the southern Monte, Argentina. Plant Ecol. 174: 235–246.CrossRefGoogle Scholar
  9. Bisigato, A.J., P.E. Villagra, J.O. Ares and B.E. Rossi. 2009. Vegetation heterogeneity in Monte Desert ecosystems: A multiscale approach linking patterns and processes. J. Arid Environ. 73: 182–191.CrossRefGoogle Scholar
  10. Borcard, D., P. Legendre and P. Drapeau. 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.Google Scholar
  11. Borcard, D. and P. Legendre. 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbor matrices. Ecol. Model. 153: 51–68.CrossRefGoogle Scholar
  12. Borcard, D., P. Legendre, C. Avois-Jacquet and H. Tuomisto. 2004. Dissecting the spatial structure of ecological data at multiple scales. Ecology 85: 1826–1832.CrossRefGoogle Scholar
  13. Borcard, D., F. Gillet and P. Legendre. 2011. Numerical Ecology with R. Springer, New York, USA.CrossRefGoogle Scholar
  14. Breiman, L., J.H. Friedman, R.A. Olshen and C.J. Stone. 1984. Classification and Regression Trees. Wadsworth International Group, Belmont, CA.Google Scholar
  15. Carrera, A.L., M.J. Mazzarino, M.B. Bertiller, H.F. del Valle and E. Martínez Carretero. 2009. Plant impacts on nitrogen and carbon cycling in the Monte Phytogeographical Province, Argentina. J. Arid Environ. 73: 192–201.CrossRefGoogle Scholar
  16. Catorci, A., F.M. Tardella, S. Cesaretti, M. Bertellotti and R. Santolini. 2012. The interplay among grazing history, plant-plant spatial interactions and species traits affects vegetation recovery processes in Patagonian steppe. Community Ecol. 13: 253–263.CrossRefGoogle Scholar
  17. Catorci, A., J.L. Velasquez, S. Cesaretti, L. Malatesta, F.M. Tardella and H. Zeballos. 2014. How environment and grazing influence floristic composition of dry Puna in the southern Peruvian Andes. Phytocoenologia 44: 103–119.CrossRefGoogle Scholar
  18. Coronato, F.R. 1994. Infuencia de las mesetas del este de la Patagonia central en las características oceánicas del clima del área. Anales del Instituto de la Patagonia, Serie Ciencias Naturales 21: 131–146.Google Scholar
  19. Crawley, M.J. and J.E. Harral. 2001. Scale dependence in plant biodiversity. Science 291: 864–868.CrossRefGoogle Scholar
  20. De Fina, A.L. 1978. Datos agroclimáticos de la República Argentina. Secretaría de Agricultura y Ganadería de la Nación, INTA, Centro de Investigaciones de Recursos Naturales, publ. n°163.Google Scholar
  21. Dirección General de Estadísticas y Censos – Provincia del Chubut. 2012. Encuesta ganadera 2010–2011. Accessed 30 July 2013.
  22. Dray, S., R. Pélissier, P. Couteron, M.-J. Fortin, P. Legendre, P.R. Peres-Neto, E. Bellier, R. Bivand, F.G. Blanchet, M. De Cáceres, A.-B Dufour, E. Heegaard, T. Jombart, F. Munoz, J. Oksanen, J. Thioulouse and H.H. Wagner. 2012. Community ecology in the age of multivariate multiscale spatial analysis. Ecol. Monogr. 82: 257–275.Google Scholar
  23. Dray S., P. Legendre and G. Blanchet. 2013. packfor: Forward Selection with permutation (Canoco p.46). R package version 0.0-8/r109.
  24. Dufrène, A. and P. Legendre. 1997. Species assemblages and indicator species: the need for a fexible asymmetrical approach. Ecol. Monogr. 67: 345–366.Google Scholar
  25. Fernández, S.S., A.P. Padilla and S. Mucciarelli. 1999. Protein extraction from Atriplex lampa leaves: Potential use as forage for animals used for human diets. Plant Foods Hum. Nutr. 54: 251–259.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Fidalgo, F. and J.C. Riggi. 1970. Consideraciones geomórficas y sedimentológicas sobre los Rodados Patagónicos. Revista de la Asociación Geológica Argentina 25: 430–443.Google Scholar
  27. Frayssinet, N., E. González, A. D´Ambrogio, S. Fernández and I. Furlan. 2007. Estudio citológico, exo y endomorfológico en Atriplex lampa (Moq.) D. Dietr. (Chenopodiaceae). Polibotánica 24: 1–23.Google Scholar
  28. Haller, M., C.M. Meister, A.J. Monti and N. Weiler. 2005. Hoja Geológica 4366-II, “Puerto Madryn”, Provincia del Chubut. Instituto de Geología y Recursos Minerales (SEGEMAR), Boletín 289, Buenos Aires.Google Scholar
  29. Hegazy, A.K., J. Lovett-Doust, O. Hammouda and N.H. Gomaa. 2007. Vegetation distribution along the altitudinal gradient in the northwestern Red Sea region. Community Ecol. 8: 151–162.CrossRefGoogle Scholar
  30. Heikkinen, R.K. and H.J.B. Birks. 1996. Spatial and environmental components of variation in the distribution patterns of subartic plant species at Kevo, N Finland – a case study at the meso-scale level. Ecography 19: 341–351.CrossRefGoogle Scholar
  31. Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25: 1965–1978.CrossRefGoogle Scholar
  32. Huete, A., K. Didan, T. Miura, E.P. Rodriguez, X. Gao and L.G. Ferreira. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83: 195–213.CrossRefGoogle Scholar
  33. Jones, M.M., H. Tuomisto, D. Borcard, P. Legendre, D.B. Clark and P.C. Olivas. 2008. Explaining variation in tropical plant community composition: infuence of environmental and spatial data quality. Oecologia 155: 593–604.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kröpf, A.I., V.A. Deregibus and G.A. Cecchi. 2007. Disturbios en una estepa arbustiva del Monte: cambios en la vegetación. Ecología Austral 17: 257–268.Google Scholar
  35. Labraga, J.C. and R. Villalba. 2009. Climate in the Monte Desert: Past trends, present conditions, and future projections. J. Arid Environ. 73: 154–163.CrossRefGoogle Scholar
  36. Lacey, R.W.J., P. Legendre and A.G. Roy. 2007. Spatial-scale partitioning of in situ turbulent fow data over a pebble cluster in a gravel-bed river. Water Resour. Res. 43: W03416.Google Scholar
  37. Legendre, P. and E.D. Gallagher. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.PubMedPubMedCentralGoogle Scholar
  38. Legendre, P and L. Legendre. 1998. Numerical Ecology. Elsevier, Amsterdam.Google Scholar
  39. Legendre, P., D. Borcard, F.G. Blanchet and S. Dray. 2013. PCNM: MEM spatial eigenfunction and principal coordinate analyses. R package version 2.1-2/r109.
  40. León, R.J.C., D. Bran, M. Collantes, J.M. Paruelo and A. Soriano. 1998. Grandes unidades de vegetación de la Patagonia extra andina. Ecología Austral 8: 125–144.Google Scholar
  41. Lu, T., K.M. Ma, W.H. Zhang and B.J. Fu. 2006. Differential responses of shrubs and herbs present at the Upper Minjiang River basin (Tibetan Plateau) to several soil variables. J. Arid Environ. 67: 373–390.CrossRefGoogle Scholar
  42. Maestre, F.T., J. Cortina, S. Bautista, J. Bellot and R. Vallejo. 2003. Small-scale environmental heterogeneity and spatiotemporal dynamics of seedling establishment in a semiarid degraded ecosystem. Ecosystems 6: 630–643.CrossRefGoogle Scholar
  43. Morello, J. 1958. La Provincia Fitogeográfca del Monte, Opera Lilloana II, Tucumán.Google Scholar
  44. Mueller-Dombois, D. and H. Ellenberg. 1974. Aims and Methods of Vegetation Ecology. Wiley, New York.Google Scholar
  45. Oksanen, J., F.G. Blanchet, R. Kindt, P. Legendre, P.R. Minchin, R.B. O’Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens and H. Wagner. 2013. vegan: Community Ecology Package. R package version 2.0-10.
  46. Palacio R.G., A.J. Bisigato and P.J. Bouza. 2014. Soil erosion in three grazed plant communities in northeastern Patagonia. Land Degrad. Develop. 25: 594–603.CrossRefGoogle Scholar
  47. Pan, D., A. Bouchard, P. Legendre and G. Domon. 1998. Infuence of edaphic factors on the spatial structure of inland halophytic communities: a case study in China. J. Veg. Sci. 9: 797–804.CrossRefGoogle Scholar
  48. Paruelo, J.M., A. Beltrán, E. Jobbágy, O.E. Sala and R.A. Golluscio. 1998. The climate of Patagonia: general patterns and controls on biotic processes. Ecología Austral 8: 85–101.Google Scholar
  49. Reynolds, J.F. and J. Wu. 1999. Do landscape structural and functional units exist? In: J.D. Tenhunen and P. Kabat (eds.), Integrating Hydrology, Ecosystem Dynamics, and Biogeochemistry in Complex Landscapes. Wiley, New York, pp. 273–296.Google Scholar
  50. Roberts, D.W. 2013. labdsv: Ordination and Multivariate Analysis for Ecology. R package version 1.6-1.
  51. Rostagno, C.M., G.E. Defossé and H.F. del Valle. 2006. Postfre vegetation dynamics in three rangelands of Northeastern Patagonia, Argentina. Rangeland Ecol. Manage. 59: 163–170.CrossRefGoogle Scholar
  52. Rundel, P.W., P.E. Villagra, M.O. Dillon, S. Roig-Juñent and G. Debandi. 2007. Arid and semi-arid ecosystems. In: T.T. Veblen, K. Young and A.E. Orme (eds.), The Physical Geography of South America. Oxford University Press, New York, pp 158–183.Google Scholar
  53. Soriano, A. 1950. La Vegetación del Chubut. Revista Argentina de Agronomía 17: 30–66.Google Scholar
  54. Speziale, K.L., A. Ruggiero and C. Ezcurra. 2009. Plant species richness-environment relationships across the Subantartic-Patagonian transition zone. J. Biogeogr. 37: 449–464.CrossRefGoogle Scholar
  55. Suzuki, R. and H. Shimodaira. 2011. pvclust: Hierarchical Clustering with P-Values via Multiscale Bootstrap Resampling. R package version 1.2-2.
  56. Therneau, T.M. and B. Atkinson. 2010. The rpart package.
  57. Villagra, P.E., D.E. Defossé, H.F. del Valle, S. Tabeni, M. Rostagno, E. Cesca and E. Abraham. 2009. Land use and disturbance effects on the dynamics of natural ecosystems of the Monte Desert: Implications for their management. J. Arid Environ. 73: 202–211.CrossRefGoogle Scholar
  58. White, M., K.M. de Beurs, K. Didan, D.W. Inouye, A.D. Richardson, O.P. Jensen, J. O’Keefe, G. Zhang, R.R. Nemani, W.J.D. Van Leeuwen, J.F. Brown, A. De Wit, M. Schaepman, X. Lin, M. Dettinger, A.S. Bailey, J. Kimball, M.D. Schartz, D.D. Baldocchi, J.T. Lee and W.K. Lauenroth. 2009. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Global Change Biol. 15: 2335–2359.CrossRefGoogle Scholar
  59. Zhang, J.-T., Y. Xi, and J. Li. 2006. The relationships between environment and plant communities in the middle part of Taihang Mountain Range, North China. Community Ecol. 7: 155–163.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • A. J. Bisigato
    • 1
    • 2
    Email author
  • L. A. Hardtke
    • 1
  • H. F. del Valle
    • 1
  • P. J. Bouza
    • 1
  • R. G. Palacio
    • 1
  1. 1.Centro Nacional Patagónico (CONICET)Puerto MadrynArgentina
  2. 2.Universidad Nacional de la Patagonia San Juan BoscoPuerto MadrynArgentina

Personalised recommendations