Advertisement

Community Ecology

, Volume 17, Issue 1, pp 107–113 | Cite as

How do diversity and functional nestedness of bird communities respond to changes in the landscape caused by eucalyptus plantations?

  • L. I. JacoboskiEmail author
  • V. J. Debastiani
  • A. de Mendonça-Lima
  • S. M. Hartz
Article

Abstract

Studies of functional diversity can help to understand processes that determine the presence of species in different habitats. Measurement of functional diversity in silviculture areas is important because different functional traits can show different responses to this landscape alteration, and therefore ecological functions can be affected. This study evaluated functional and taxonomic differences in bird assemblages in a native forest and eucalyptus plantations, and also assessed the functional nestedness of the bird species. We censused birds in eucalyptus plantations of four different ages, and also in a native forest. The results showed higher functional and taxonomic diversity of birds in the native forest than in plantations and higher similarity of functional traits between plantations of different ages. The high functional diversity in the native forest indicates a greater variety of functional traits, resulting in greater functional complementarity than in plantations. The association of some traits with the native forest, such as nectarivory and foraging in air, indicates the importance of native habitats in maintaining species and functions related to such traits. Already, species traits in eucalyptus plantations represent a subset of those that were recorded in the native forest, indicating that some functions are maintained in plantations. Our results demonstrate that the species occurrence in the plantations and native forest is determined by species traits. Thus, the maintenance of some functions in plantations is provided, although there is a higher functional diversity in native forest.

Keywords

Avian fauna Functional traits Nestedness Silviculture 

Abbreviations

CWM

Community Weighted Mean traits

HFBN

Horto Florestal Barba Negra

NF

Native Forest

NODF

Nestedness metric based on Overlap and Decreasing Fill

PPA

Permanent Preservation Area

Nomenclature

Piacentini et al. (2015) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42974_2016_1701107_MOESM1_ESM.pdf (16 kb)
Supplementary material, approximately 17 KB.

References

  1. Almeida-Neto, M, P. Guimarães, P.R. Guimarães Jr., R.D. Loyola and W. Ulrich. 2008. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117: 1227–1239.CrossRefGoogle Scholar
  2. Anjos, L. dos, 2001. Bird communities in five Atlantic forest fragments in southern Brazil. Ornitol. Neotrop. 12: 11–27.Google Scholar
  3. Aspiroz, A.B., J.P. Isacch, R.A. Dias, A.S. Giacomo, C.S. Fontana and C.M. Palarea. 2012. Ecology and conservation of grassland birds in southeastern South America: a review. J. Field Ornithol. 83: 217–246.CrossRefGoogle Scholar
  4. Barlow, J., L. A. M. Mestre, T. A. Gardner and C. A. Peres. 2007. The value of primary, secondary and plantation forests for Amazonian birds. Biol. Conserv. 36: 212–231.Google Scholar
  5. Bibby, C.J., N.D. Burgess, and D.A. Hill. 1992. Bird Census Techniques. Academic Press, London.Google Scholar
  6. Boyer, A.G. and W. Jetz. 2014. Extinctions and the loss of ecological function in island bird communities. Global Ecol. Biogeogr. 23: 679–688.CrossRefGoogle Scholar
  7. Brockerhoff, E.G., H. Jactel, J.A. Parrotta, C.P. Quine and J. Sayer. 2008. Plantation forests and biodiversity: oxymoron or opportunity? Biodivers. Conserv. 17: 925–951.CrossRefGoogle Scholar
  8. Cianciaruso, M.V., I.A. Silva and M.A. Batalha. 2009. Diversidades filogenética e funcional: novas abordagens para a ecologia de comunidades. Biota Neotrop. 9: 93–103.CrossRefGoogle Scholar
  9. Cleary, D.F.R., T.J.B. Boyle, T. Setyawati, C.D. Anggraeni, E.E. Van Loon and S.B. Menken. 2007. Bird species and traits associated with logged and unlogged forest in Borneo. Ecol. Appl. 17: 1184–1197.CrossRefGoogle Scholar
  10. Colwell, R.K. 2013. EstimateS 9.1.0. Retrieved from: http://viceroy.eeb.uconn.edu/estimates/index.html/ on 22/08/2014.
  11. Colwell, R.K. and J.A. Coddington. 1994. Estimating terrestrial biodiversity through extrapolation. Phil. Trans. R. Soc. Lond. B. Biol. Sci. 345: 101–118.CrossRefGoogle Scholar
  12. Del Hoyo, J., A. Elliot and J. Sargatal. 1992–2002. Handbook of the Birds of the World. Lynx, Barcelona. (Ostrich to ducks, vols. 1–7).Google Scholar
  13. Del Hoyo, J., A. Elliot and D. Christie. 2003–2006. Handbook of the Birds of the World. Lynx, Barcelona. (Broadbills to tapaculos, vols. 8–11).Google Scholar
  14. de Souza, D., D.F.B. Flynn, F. De Clerck, R.K. Rosenbaum, H.M. Lisboa and T. Koellner. 2013. Land use impacts on biodiversity in LCA: proposal of characterization factors based on functional diversity. Int. J. Life Cycle Assess. 18: 1231–1242.CrossRefGoogle Scholar
  15. Develey, P.F. 2003. Métodos para estudos com aves. In: Cullen Jr., L., R. Rudran and C. Valladares-Padua (eds), Métodos de estudos em Biologia da Conservação & Manejo da Vida Silvestre. Editora UFPR, Curitiba, pp. 153–168.Google Scholar
  16. Edwards, F.A., D.P. Edwards, K.C. Hamer and R.G. Davies. 2013. Impacts of logging and conversion of rainforest to oil palm on the functional diversity of birds in Sundaland. Ibis 155: 313–326.CrossRefGoogle Scholar
  17. Filloy, J. and M.I. Bellocq. 2007. Respuesta de las aves rapaces al uso de la tierra: un enfoque regional. Hornero 22: 131–140.Google Scholar
  18. Flynn D.F.B., M. Gogol-Prokurat, T. Nogeire, N. Molinari, B.T. Richers, B.B. Lin, N. Simpson, M.M. Mayfield and F. de Clerck. 2009. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12: 22–33.CrossRefGoogle Scholar
  19. Garnier, E., Cortez, J., Billes, G., Navas, M.L., Roumet, C., M. Debussche, G. Laurent, A. Blanchard, D. Aubry, A. Bellmann, C. Neill and J.P. Toussaint. 2004. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85: 2630–2637.Google Scholar
  20. Gray, M.A., S.L. Baldauf, P.J. Mayhew and J.K. Hill. 2007. The response of avian feeding guilds to tropical forest disturbance. Conserv. Biol. 21: 133–141.CrossRefGoogle Scholar
  21. Guerrero I., M.B. Morales, J.J. Oñate, T. Aavik, J. Bengtsson, F. Berendse, L.W. Clement, C. Dennis, S. Eggers, M. Emmerson, C. Fischer, A. Flohre, F. Geiger, V. Hawro, P. Inchausti, A. Kalamees, R. Kinks, J. Liira, L. Meléndez, T. Pärt, C. Thies and T. Tscharntke. 2011. Taxonomic and functional diversity of farmland bird communities across Europe: effects of biogeography and agricultural intensification. Biodivers. Conserv. 20: 3663–3681.Google Scholar
  22. Jacoboski, L.I., A. Mendonça-Lima and S.M. Hartz. 2016. Structure of bird communities in eucalyptus plantations: nestedness as a pattern of species distribution. Braz. J. Biol. (in press).Google Scholar
  23. Kwok, H.K. and R.T. Corlett. 2000. The bird communities of a natural secondary forest and a Lophostemon confertus plantation in Hong Kong, South China. For. Ecol. Manage. 130: 227–234.CrossRefGoogle Scholar
  24. Leite, P.F. 2002. Contribuição ao conhecimento fitoecológico do sul do Brasil. Ciência Ambiental 24: 51–73.Google Scholar
  25. Lindenmayer, D.B., S. McIntyre and J. Fischer. 2003. Birds in eucalypt and pine forests: landscape alteration and its implications for research models of faunal habitat use. Biol. Conserv. 110: 45–53.CrossRefGoogle Scholar
  26. Luck, G.W., S. Lavorel, S. McIntyre and K. Lumb. 2012. Improving the application of vertebrate trait-based frameworks to the study of ecosystem services. J. Anim. Ecol. 81: 1065–1076.CrossRefGoogle Scholar
  27. Luck, G.W., A. Carter and L. Smallbone. 2013. Changes in bird functional diversity across multiple land uses: interpretations of functional redundancy depend on functional group identity. PLoS ONE 8: 63671–63682.CrossRefGoogle Scholar
  28. Magurran, A.E. 1988. Ecological Diversity and Its Measurement. Princeton University Press, Princeton.CrossRefGoogle Scholar
  29. Marsden, S.J., M. Whiffin and M. Galetti. 2001. Bird diversity and abundance in forest fragments and Eucalyptus plantations around an Atlantic forest reserve, Brazil. Biodivers. Conserv. 10: 737–751.CrossRefGoogle Scholar
  30. Melo, A.S., M.V. Cianciaruso and M. Almeida-Neto. 2014. treeNODF: nestedness to phylogenetic, functional and other tree-based diversity metrics. Methods Ecol. Evol. 5: 563–572.CrossRefGoogle Scholar
  31. Moreno, J.A. 1961. Clima do Rio Grande do Sul. Secretaria da Agricultura, Porto Alegre.Google Scholar
  32. Motta-Junior, J.C. 1990. Estrutura trófica e composição de avifauna de três habitats terrestres na região central do estado de São Paulo. Ararajuba 1: 65–71.Google Scholar
  33. Newbold T., J.P.W. Scharlemann, S.H.M. Butchart, Ç. Sekercioglu, R. Alkemade, H. Booth and D.W. Purves. 2012. Ecological traits affect the response of tropical forest bird species to land-use intensity. Proc. R. Soc. B. 280: 2012–2131.Google Scholar
  34. Petchey, O.L. and K.J. Gaston. 2006. Functional diversity: back to basics and looking forward. Ecol. Lett. 9: 741–758.CrossRefGoogle Scholar
  35. Piacentini, V.Q., A. Aleixo, C.A. Agne, G.N. Maurício, J.F. Pacheco, G.A. Bravo, G.R.R. Brito, L.N. Naka, F. Olmos, S. Posso, L.F. Silveira, G.S. Betini, E. Carrano, I. Franz, A.L. Lees, L.M. Lima, D. Pioli, F. Schunck, F.R. Amaral, G.A. Bencke, M. Cohn-Haft, L.F.A. Figueiredo, F.C. Straube and E. Cesari. 2015. Annotated checklist of the birds of Brazil by the Brazilian Ornithological Records Committee. Rev. Bras. Ornitol. 23: 91–298.Google Scholar
  36. Pillar, V.D. 2006. MULTIV: Multivariate exploratory analysis, randomization testing and boostrap resampling, user’s guide v. 2. 4. Universidade Federal do Rio Grande do Sul, Porto Alegre. Retrieved from: http://ecoqua.ecologia.ufrgs.br/rquivos/Software/Multiv/ on 25/06/2012.
  37. Pillar, V.D. and L.S. Duarte. 2010. A framework for metacommunity analysis of phylogenetic structure. Ecol. Lett. 13: 587–596.CrossRefGoogle Scholar
  38. Pillar, V.D., L.D.S Duarte, E.E. Sosinski and F. Joner. 2009. Discriminating traitconvergence and trait-divergence assembly patterns in ecological community gradients. J. Veg. Sci. 20: 334–348.CrossRefGoogle Scholar
  39. R Development Core Team. 2012. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org//.
  40. Rao, C.R. 1982. Diversity and dissimilarity coefficients–a unified approach. Theor. Popul. Biol. 21: 24–43.CrossRefGoogle Scholar
  41. Ross, A.L. 2010. Capturando aves. In: Matter, S.V. Straube F.C., Accordi I., Piacentini V. and Cândido-Jr, J.F. (eds), Ornitologia e Conservação: Ciência Aplicada, Técnicas de Pesquisa e Levantamento. Technical Books Editora, Rio de Janeiro, pp. 77–104.Google Scholar
  42. Sekercioglu, Ç.H. 2006. Increasing awareness of avian ecological function. Trends Ecol. Evol. 21: 464–471.CrossRefGoogle Scholar
  43. Sekercioglu, Ç.H. 2012. Bird functional diversity and ecosystem services in tropical forests, agroforests and agricultural areas. J. Ornithol. 153: 153–161.CrossRefGoogle Scholar
  44. Sick, H. 1997. Ornitologia Brasileira. Editora Nova Fronteira, Rio de Janeiro.Google Scholar
  45. Sydow, V.G. 2010. Vegetação de sub-bosque em monocultura de Eucalyptus saligna Sm. (Myrtaceae). Dissertação de Mestrado – Universidade Federal do Rio Grande do Sul.Google Scholar
  46. Tilman, D., J. Knops, D. Wedin, P. Reich, M. Ritchie and E. Siemann. 1997. The influence of functional diversity and composition on ecosystem processes. Science 277: 1300–1302.CrossRefGoogle Scholar
  47. Trindade-Filho, J. and R.D. Loyola. 2010. O uso de grupos indicadores como atalho para a conservação da biodiversidade. Rev. Biol. Neotrop. 7: 27–38.Google Scholar
  48. Tscharntke, T., C.H. Sekercioglu, T.V. Dietsch, N.S. Sodhi, P. Hoehn and J.M. Tylianakis. 2008. Landscape constraints on functional diversity of birds and insects in tropical agroecosystems. Ecology 89: 944–951.CrossRefGoogle Scholar
  49. Volpato, G.H., V.M. Prado and L. Anjos. 2010. What can tree plantations do for forest birds in fragmented forest landscapes? A case study in southern Brazil. Forest Ecol. Manage. 260: 1156–1163.CrossRefGoogle Scholar
  50. Waechter, J.L. 1985. Aspectos ecológicos da vegetação de restinga no Rio Grande do Sul, Brasil. Comunicações do Museu de Ciências da PUCRS, Série Botânica 33: 49–68.Google Scholar
  51. Walker, B. 1995. Conserving Diversity Biological through Ecosystem Resilience. Conserv. Biol. 9: 747–752.CrossRefGoogle Scholar
  52. Wells K., R. B. O’Hara, S. M. Böhm, S. Gockel, A. Hemp, S.C. Renner, S. Pfeiffer, K. Böhning-Gaese, and E.K.V. Kalko. 2012. Trait-dependent occupancy dynamics of birds in temperate forest landscapes: fine-scale observations in a hierarchical multispecies framework. Anim. Conserv. 15: 626–637.CrossRefGoogle Scholar
  53. West, G.B., J.H. Brown and B.J. Enquist. 1997. A general model for the origin of allometric scaling laws in biology. Science 276: 122–126.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2016

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • L. I. Jacoboski
    • 1
    • 2
    Email author
  • V. J. Debastiani
    • 1
  • A. de Mendonça-Lima
    • 1
  • S. M. Hartz
    • 1
  1. 1.Programa de Pós-Graduação em EcologiaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  2. 2.Laboratório de Ecologia de Populações e Comunidades, Programa de Pós-Graduação em EcologiaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil

Personalised recommendations