Interplay of temperature and woody cover shapes herb communities along an elevational gradient in a temperate forest in Beijing, China

Abstract

Abiotic and biotic factors have the potential to alter herb communities, however, few studies consider feedback between them. This study explores how variation of species interaction and climatic conditions associated with changes in altitude affect herb community composition. We sampled accumulated temperatures of growth duration (June-November) (ATGD), maximum summer temperatures (MST) and herb community composition (herb height, abundance, richness) on non-gaps and forest-gaps site across an elevational gradient. A significant negative relationship was detected between MST and herb richness. The temperature of non-gaps was cooler than that of forest gaps, and overstory cover positively correlated with herb abundance. However, the ATGD exhibited a negative relationship with overstory cover, in that overstory cover decreased with ATGD. We suggested that temperature has a profound effect on height and richness of herb communities, while the overstory cover is moderating the effect of temperature on herb community structure and influence the abundance of herb community. Conversely, decreases in ATGD weakened the relative importance of overstory cover. We concluded that the interaction of temperature and overstory cover shapes the morphology, abundance and richness of herb communities.

Abbreviations

ATGD:

Accumulated Temperatures of Growth Duration

MST:

Maximum Summer Temperatures

OC:

Overstory Cover

References

  1. Ashton, P.S. 2003. Floristic zonation of tree communities on wet tropical mountains revisited. Perspect. Plant Ecol. 6: 87–104.

    Article  Google Scholar 

  2. Bao, S. 2000. Analysis Method of Soil Agricultural Chemistry. China Agr. Press, Beijing.

  3. Bartels, S.F. and H.Y.H. Chen. 2013. Interactions between overstory and understory vegetation along an overstory compositional gradient. J. Veg. Sci. 24: 543–552.

    Article  Google Scholar 

  4. Bauhus, J. and N. Bartsch. 1996. Fine-root growth in beech (Fagus sylvatica) forest gaps. Can. J. Forest. Res. 26: 2153–2159.

    Article  Google Scholar 

  5. Boggs, C.L. and D.D. Murphy. 1997. Community composition in mountain ecosystems: climatic determinants of montane butterfly distributions. Global Ecol. Biogeogr. 6: 39–48.

    Article  Google Scholar 

  6. Bowles, M.L., K.A. Jacobs and J.L. Mengler. 2007. Long-term changes in an oak forest’s woody understory and herb layer with repeated burning. J. Torrey Bot. Soc. 134: 223–237.

    Article  Google Scholar 

  7. Burton, J.I., D.J. Mladenoff, J.A. Forrester, and M.K. Clayton. 2014. Experimentally linking disturbance, resources and productivity to diversity in forest ground-layer plant communities. J. Ecol. 102: 1634–1648.

    Article  Google Scholar 

  8. Caldeira, M.C., I. Ibanez, C. Nogueira, M.N. Bugalho, X. Lecomte, A. Moreira and J.S. Pereira. 2014. Direct and indirect effects of tree canopy facilitation in the recruitment of Mediterranean oaks. J. Appl. Ecol. 51: 349–358.

    Article  Google Scholar 

  9. Cairns, M.A., S. Brown, E.H. Helmer and G.A. Baumgardner. 1997. Root biomass allocation in the world’s upland forests. Oecologia 111: 1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Colwell, R.K., G. Brehm, C.L. Cardelus, A.C. Gilman and J.T. Longino. 2008. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322: 258–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Crozier, C.R. and R.E. Boerner. 1984. Correlations of understory herb distribution patterns with microhabitats under different tree species in a mixed mesophytic forest. Oecologia 62: 337–343.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Daubenmire, R. 1943. Soil temperature versus drought as a factor determining lower altitudinal limits of trees in the Rocky Mountains. Bot. Gaz. 105: 1–13.

    Article  Google Scholar 

  13. De Frenne, P. et al. 2013. Microclimate moderates plant responses to macroclimate warming. P. Natl. Acad. of. Sci. USA. 110: 18561– 18565.

    Article  CAS  Google Scholar 

  14. Denno, R.F., G.K. Roderick, M.A. Peterson, A.F. Huberty, H.G. Dobel, M.D. Eubanks, J.E. Losey and G.A. Langellotto. 1996. Habitat persistence underlies intraspecific variation in the dispersal strategies of planthoppers. Ecol. Monogr. 66: 389–408.

    Article  Google Scholar 

  15. Dunson, W.A. and J. Travis. 1991. The role of abiotic factors in community organization. Am. Nat. 138: 1067–1091.

    Article  Google Scholar 

  16. Fornara, D.A. and J.T. Du Toit. 2008. Browsing-induced effects on leaf litter quality and decomposition in a southern African savanna. Ecosystems 11: 238–249.

    Article  CAS  Google Scholar 

  17. Gilliam, F.S. 2007. The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience 57: 845–858.

    Article  Google Scholar 

  18. Gomes da Silva, F.K., F. Lopes Sd, L.C. Serramo Lopez, J.I. Miranda de Melo and D.M. de Brito Melo Trovao. 2014. Patterns of species richness and conservation in the Caatinga along elevational gradients in a semiarid ecosystem. J. Arid. Environ. 110: 47–52.

    Article  Google Scholar 

  19. Gray, A.N., T.A. Spies and M.J. Easter. 2002. Microclimatic and soil moisture responses to gap formation in coastal Douglas-fir forests. Can. J. Forest Res. 32: 332–343.

    Article  Google Scholar 

  20. Grime, J.P. 1979. Plant Strategies and Vegetation Processes. John Wiley & Sons, Toronto.

    Google Scholar 

  21. Grytnes, J.A. and O.R. Vetaas. 2002. Species richness and altitude: A comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient. Nepal. Am. Nat. 159: 294–304.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hill, J.K. and I.D. Hodkinson. 1995. Effects of temperature on phenological synchrony and altitudinal distribution of jumping plant lice (Hemiptera: Psylloidea) on dwarf willow (Salix lapponum) in Norway. Ecol. Entomol. 20: 237–244.

    Article  Google Scholar 

  23. Hodkinson, I.D. 1999. Species response to global environmental change or why ecophysiological models are important: a reply to Davis et al. J. Anim. Ecol. 68: 1259-1262.

    Article  Google Scholar 

  24. Hodkinson, I.D. 2005. Terrestrial insects along elevation gradients: species and community responses to altitude. Biol. Rev. 80: 489–513.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hutchinson, G.E. 1957. Concluding remarks. Population studies: animal ecology and demography. In: Cold Spring Harbor Symposia on Quantitative Biology. Cold Spring Harbor Lab Press. pp. 415– 427.

  26. Jeremy, M. and I.D. Hodkinson. 1999. Species at the edge of their range: the significance of the thermal environment for the distribution of congeneric Craspedolepta species (Sternorrhyncha: Psylloidea) living on Chamerion angustifolium (Onagraceae). Eur. J. Entomol. 96: 103–109.

    Google Scholar 

  27. Kenward, M.G. and J.H. Roger. 1997. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53: 983–997.

    Article  CAS  Google Scholar 

  28. Kluge, J., M. Kessler and R.R. Dunn. 2006. What drives elevational patterns of diversity? A test of geometric constraints, climate and species pool effects for pteridophytes on an elevational gradient in Costa Rica. Global Ecol. Biogeogr. 15: 358–371.

    Article  Google Scholar 

  29. Körner, C. and M. Diemer. 1994. Evidence that Plants from High Altitudes Retain their Greater Photosyntheti Effciency Under Elevated CO2. Funct. Ecol. 8: 58–68.

    Article  Google Scholar 

  30. Körner, C. 2007. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 22: 569–574.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Laliberté, E.B. Shipley and M.E. Laliberté. 2010. Package ‘FD’ Measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. http://cran.r-project.org/web/packages/fd

  32. Legendre, P. and L. Legendre. 1998. Numerical Ecology. 2nd English edn. Elsevier, Amsterdam.

  33. Leuschner, C., G. Moser, C. Bertsch, M. Roederstein and D. Hertel. 2007. Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic Appl. Ecol. 8: 219–230.

    Article  Google Scholar 

  34. Lowe, C.H. 1964. Arizona’s Natural Environment: Landscapes and Habitats. University of Arizona Press, Tucson, Arizona, USA.

    Google Scholar 

  35. Ludwig, F., H. de Kroon, F. Berendse and H.H. Prins. 2004. The influence of savanna trees on nutrient, water and light availability and the understory vegetation. Plant Ecol. 170: 93–105.

    Article  Google Scholar 

  36. Machac, A., M. Janda, R.R. Dunn and N.J. Sanders. 2011. Elevational gradients in phylogenetic structure of ant communities reveal the interplay of biotic and abiotic constraints on diversity. Ecography 34: 364–371.

    Article  Google Scholar 

  37. Mölder, A., M. Bernhardt-Römermann and W. Schmidt. 2008. Herb-layer diversity in deciduous forests: raised by tree richness or beaten by beech? Forest. Ecol. Manag. 256: 272–281.

    Article  Google Scholar 

  38. Mullah, C.J.A., K. Klanderud, O. Totland and B. Kigomo. 2014. Relationships between the density of two potential restoration tree species and plant species abundance and richness in a degraded Afromontane forest of Kenya. Afr. J. Ecol. 52:77–87.

    Article  Google Scholar 

  39. Nelson, D.W. and L.A. Sommers. 1974. A rapid and accurate procedure for estimating organic carbon in soil. Proceedings of the Indiana Academy of Science pp. 456–462.

  40. Nogues-Bravo, D., M.B. Araujo, T. Lasanta and J.I. Lopez-Moreno. 2008. Climate change in Mediterranean mountains during the 21st century. Ambio 37: 280–285.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ohlemuller, R. and J.B. Wilson. 2000. Vascular plant species richness along latitudinal and altitudinal gradients: a contribution from New Zealand temperate rainforests. Ecol. Lett. 3: 262–266.

    Article  Google Scholar 

  42. Oksanen, J.F.G. Blanchet, R. Kindt, M. J. Oksanen and M. Suggests. 2013. Package ‘vegan’ Community ecology package Version 2.3. http://cran.r-project.org/web/packages/vegan

  43. Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. S. 37: 637–669.

    Article  Google Scholar 

  44. Price, J.N. and J.W. Morgan. 2008. Woody plant encroachment reduces species richness of herb-rich woodlands in southern Australia. Austral. Ecol. 33: 278–289.

    Article  Google Scholar 

  45. Ramírez, J.M., P.J. Rey, J.M. Alcántara and A.M. Sánchez-Lafuente. 2006. Altitude and woody cover control recruitment of Helleborus foetidus in a Mediterranean mountain area. Ecography 29: 375–384.

    Article  Google Scholar 

  46. Randall, M.G. 1982. The dynamics of an insect population throughout its altitudinal distribution: Coleophora alticolella (Lepidoptera) in northern England. J. Anim. Ecol. 51: 1: 993–1016.

    Article  Google Scholar 

  47. Rochow, T.F. 1970. Ecological investigations of Thlaspi alpestre L. along an elevational gradient in Central Rocky Mountains. Ecology 51:649-&.

    Article  Google Scholar 

  48. Roff, D. 1980. Optimizing development time in a seasonal environment: the ‘ups and downs’ of clinal variation. Oecologia 45: 202–208.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Smith, K.J., W.S. Keeton, M.J. Twery and D.R. Tobi. 2008. Understory plant responses to uneven-aged forestry alternatives in northern hardwood-conifer forests. Can. J. Forest Res. 38: 1303–1318.

    Article  Google Scholar 

  50. Sundqvist, M.K., N.J. Sanders and D.A. Wardle. 2013. Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change. Annu. Rev. Ecol. Evol. S. 44: 261–280.

    Article  Google Scholar 

  51. Ter Steege, H. 1996. Winphot 5: a programme to analyze vegetation indices, light and light quality from hemispherical photographs. Tropenbos-Guyana Programme Tropenbos. Guyana.

  52. Vanhellemont, M., L. Baeten and K. Verheyen. 2014. Relating changes in understory diversity to environmental drivers in an ancient forest in northern Belgium. Plant Ecol. Evol. 147: 22–32.

    Article  Google Scholar 

  53. Vourlitis, G.L., F.A. Lobo, S. Lawrence, K. Holt, A. Zappia, O.B. Pinto and J.D.S. Nogueira. 2014. Nutrient resorption in tropical savanna forests and woodlands of central Brazil. Plant Ecol. 215: 963–975.

    Article  Google Scholar 

  54. Yun, F., M. Keming and Z. Yunxin. 2008. DCCA analysis of plant species distributions in different strata of oak (Quercus liaotungensis) forest along an altitudinal gradient in Dongling Mountain, China. J. Plant Ecol. (China Version). 32: 568–573.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Keming Ma.

Electronic supplementary material

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Ma, K., Anand, M. et al. Interplay of temperature and woody cover shapes herb communities along an elevational gradient in a temperate forest in Beijing, China. COMMUNITY ECOLOGY 16, 215–222 (2015). https://doi.org/10.1556/168.2015.16.2.9

Download citation

Keywords

  • Accumulated temperature of growth duration
  • Elevational gradient
  • Herb communities
  • Maximum summer temperature
  • Overstory cover