Advertisement

Community Ecology

, Volume 16, Issue 2, pp 189–195 | Cite as

Humped-back shaped response of plant species richness to increasing shrub encroachment in calcareous grasslands

  • S. Kesting
  • U. PetersenEmail author
  • J. Isselstein
Article

Abstract

In the present study, we examined the effect of shrub encroachment in temperate semi-natural grasslands on plant species diversity. We tested the hypothesis that an initial shrub encroachment leads to enhanced habitat heterogeneity and thereby to a higher diversity. In a calcareous grassland near Göttingen (Germany) we analysed the effect of shrub encroachment on the species richness in 30, 100 m2 plots each with 10 subplots of 1m2 size. The 30 main plots belonged to six different shrub encroachment classes. A descriptive correlative gradient analysis of shrub invaded grasslands and their species number of flowering plants was performed. Within the 30 plots of different shrub encroachment a total of 203 plant species were recorded. The mean α1-diversity (level of subplots), mean α2-diversity (level of plots) as well as the α3-diversity (level of shrub encroachment classes) have their highest values at medium shrub invaded sites. This finding is in line with our hypothesis of a hump-back relation between shrub encroachment and species richness, and can be explained by the increased habitat heterogeneity. However, Detrended Correspondence Analysis (DCA) emphasized the importance of the present vegetation composition for species richness. The dominance of highly competitive, clonal-growing grass species is accompanied by low diversity swards with a lower facilitation of shrub establishment. Species accumulation curves highlight the benefit of shrub encroachment for γ-(landscape-) diversity. This result emphasises the importance of habitat heterogeneity for biodiversity and, therefore, nature conservation.

Keywords

α-diversity γ-diversity Habitat heterogeneity Semi-natural grassland Shrub cover Shrub invasion Species accumulation curve 

Abbreviations

DCA

Detrended Correspondence Analysis

GLM

Generalized Linear Model

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barry, R.G. 2008. Mountain Weather and Climate. 3rd ed. Cambridge University Press, Cambridge, UK.Google Scholar
  2. Bobbink, R. and Willems, J.H. 1987. Increasing dominance of Brachypodium pinnatum (L.) Beauv. in chalk grasslands – a threat to a species-rich ecosystem. Biol. Conserv. 40: 301–314.CrossRefGoogle Scholar
  3. Dengler, J., Janišová, M., Török, P. and Wellstein, C. 2014. Biodiversity of Palaearctic grasslands: a synthesis. Agr., Ecosyst. Environ. 182: 1–14.CrossRefGoogle Scholar
  4. Dierschke, H. 2006. Secondary progressive succession of an abandoned calcareous grassland – research on permanent plots 1987–2002. Hercynia N. F. 39: 223–245.Google Scholar
  5. Dölle, M., Bernhardt-Römermann, M., Parth, A. and Schmidt, W. 2008. Changes in life history trait composition during undisturbed old-field succession. Flora - Morphology, Distribution, Functional Ecology of Plants 203: 508–522.CrossRefGoogle Scholar
  6. Duelli, P. 1997. Biodiversity evaluation in agricultural landscapes: An approach at two different scales. Agr, Ecosyst. Environ. 62: 81–91.CrossRefGoogle Scholar
  7. Duelli, P. 1992. Mosaikkonzept und Inseltheorie in der Kulturlandschaft. Verhandlungen der Gesellschaft für Ökologie 21: 379–383.Google Scholar
  8. Dzwonko, Z. 2011. Effect of changes in land use during the 20th century on woodland and calcareous grassland vegetation in southern Poland. Folia Biologica et Oecologica 7, 27p.CrossRefGoogle Scholar
  9. Galvanek, D. and Lepš, J. 2008. Changes of species richness pattern in mountain grasslands: abandonment versus restoration. Biodivers. Conserv. 17: 3241–3253.CrossRefGoogle Scholar
  10. Garve, E. 2007. Verbreitungsatlas der Farn- und Blütenpflanzen in Niedersachsen und Bremen. Nieders. Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz, Hannover.Google Scholar
  11. Gotelli, N.J. and Colwell, R.K. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4: 379–391.CrossRefGoogle Scholar
  12. Grime, J.P. 2001. Plant Strategies, Vegetation Processes, and Ecosystem Properties. 2nd ed. Wiley, Chichester, UK.Google Scholar
  13. Habel, J.C., Dengler, J., Janišová, M., Török, P., Wellstein, C. and Wiezik, M. 2013. European grassland ecosystems: threatened hotspots of biodiversity. Biodiv Conserv. 22: 2131–2138.CrossRefGoogle Scholar
  14. Hill, M.O. and Gauch, H.G. 1980. Detrended correspondence analysis: An improved ordination technique. Plant Ecol. 42: 47–58.CrossRefGoogle Scholar
  15. Hondong, H, Langner, S. and Coch, T. 1993. Untersuchungen zum Naturschutz an Waldrändern. Bristol-Schriftenreihe 2: 196S.Google Scholar
  16. Klimek, S, Kemmermann, A.R., Hofmann, M. and Isselstein, J. 2007. Plant species richness and composition in managed grasslands: The relative importance of field management and environmental factors. Biol. Conserv. 134: 559–570.CrossRefGoogle Scholar
  17. Kollmann, J. and Poschlod, P. 1997. Population processes at the grassland-scrub interface. Phytocoenologia 27: 235–256.CrossRefGoogle Scholar
  18. Kull, K. and Zobel, M. 1991. High species richness in an Estonian wooded meadow. J. Veg. Sci. 2: 715–718.CrossRefGoogle Scholar
  19. MacArthur, R.H. and Wilson, E.O. 1967. The Theory of Island Biogeography Princeton University Press, Princeton, USA.Google Scholar
  20. Mitlacher, K., Poschlod, P., Rosen, E. and Bakker, J.P 2002. Restoration of wooded meadows – a comparative analysis along a chronosequence on Oland (Sweden). Appl. Veg. Sci. 5: 63–73.Google Scholar
  21. Novák, J., Pavlů, V. and Ludvíková, V. 2013. Reintroduction of grazing management after deforestation of formerly abandoned grassland and its effect on early vegetation changes in the Western Carpathians (Slovakia). Grass Forage Sci. 68: 448– 458.CrossRefGoogle Scholar
  22. Pärtel, M., Bruun, H.H. and Sammul, M. 2005. Biodiversity in temperate European grasslands: origin and conservation. Grassl. Sci. Europe 10: 1–14.Google Scholar
  23. Pihlgren, A. and Lennartsson, T. 2008. Shrub effects on herbs and grasses in semi-natural grasslands: positive, negative or neutral relationships? Grass Forage Sci. 63: 9–21.CrossRefGoogle Scholar
  24. Poschlod, P. and WallisDeVries, M.F. 2002. The historical and socioeconomic perspective of calcareous grasslands–lessons from the distant and recent past. Biol. Conserv. 104: 361–376.CrossRefGoogle Scholar
  25. Prach, K., Pyšek, P. and Bastl, M. 2001. Spontaneous vegetation succession in human-disturbed habitats: A pattern across seres. Appl. Veg. Sci. 4: 83–88.CrossRefGoogle Scholar
  26. Prach, K. and Řehounková, K. 2006. Vegetation succession over broad geographical scales: which factors determine the patterns? Preslia 78: 469–480.Google Scholar
  27. Pykälä, J., Luoto, M., Heikkinen, R.K. and Kontula, T. 2005. Plant species richness and persistence of rare plants in abandoned semi-natural grasslands in northern Europe. Basic Appl. Ecol. 6: 25–33.CrossRefGoogle Scholar
  28. Ratajczak Z., Nippert J.B. and Collins S.L. 2012. Woody encroachment decreases diversity across North American grasslands and savannas. Ecology 93: 697–704CrossRefGoogle Scholar
  29. R Development Core Team 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  30. Řehounková, K. and Prach, K. 2006. Spontaneous vegetation succession in disused gravel-sand pits: Role of local site and landscape factors. J. Veg. Sci. 17: 583–590.CrossRefGoogle Scholar
  31. Schreiber, K. 1995. Renaturierung von Grünland - Erfahrungen aus langjährigen Untersuchungen und Managementmaßnahmen. Berichte der Reinhold-Tüxen-Gesellschaft 7: 111–140.Google Scholar
  32. ter Braak, C.J.F. and Šmilauer, P. 2002. CANOCO reference manual and CanoDraw for Windows user’s guide: Software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca NY, USA.Google Scholar
  33. Valkó, O., Török, P., Tóthmérész, B. and Matus, G. 2011. Restoration potential in seed banks of acidic fen and dry-mesophilous meadows: Can restoration be based on local seed banks? Restor Ecol. 19: 9–15.CrossRefGoogle Scholar
  34. Valkó, O., Török, P., Matus, G. and Tóthmérész, B. 2012. Is regular mowing the most appropriate and cost-effective management maintaining diversity and biomass of target forbs in mountain hay meadows? Flora-Morphology Distribution, Funct. Ecol. Plants 207: 303–309.CrossRefGoogle Scholar
  35. van Auken, O.W. 2000. Shrub invasions of North American semi-arid grasslands. Ann. Rev. Ecol. Syst. 31: 197–215.CrossRefGoogle Scholar
  36. Whittaker, R.H. 1972. Evolution and measurement of species diversity. Taxon 21: 213–251Google Scholar
  37. Willems, J.H. 2001. Problems, approaches, and, results in restoration of Dutch calcareous grassland during the last 30 years. Restor. Ecol. 9: 147–154.CrossRefGoogle Scholar
  38. Wilson, J.B., Peet, R.K., Dengler, J. and Pärtel, M. 2012. Plant species richness: the world records. J. Veg. Sci. 23: 796–802.CrossRefGoogle Scholar
  39. Wisskirchen, R. and Haeupler, H. 1998. Standardliste der Farn-und Blütenpflanzen Deutschlands. Ulmer, Stuttgart, Germany.Google Scholar
  40. Zavaleta, E. 2006. Shrub establishment under experimental global changes in a California grassland. Plant Ecol. 184: 53–63.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2015

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Crop SciencesUniversity of GöttingenGöttingenGermany
  2. 2.Saxon State Office for Environment, Agriculture and Geology, Department of Plant ProductionPöhlGermany
  3. 3.Johann Heinrich von Thünen Institute of Climate Smart AgricultureBraunschweigGermany

Personalised recommendations