Community Ecology

, Volume 16, Issue 2, pp 244–253 | Cite as

Wild boar rooting intensity determines shifts in understorey composition and functional traits

  • S. BurrascanoEmail author
  • R. Copiz
  • E. Del Vico
  • S. Fagiani
  • E. Giarrizzo
  • M. Mei
  • A. Mortelliti
  • F. M. Sabatini
  • C. Blasi


In recent decades, the European populations of wild boar have grown substantially, as has the impact of this species, owing above all to its rooting activity. Our aim was to investigate the relationships between vascular plant understorey and wild boar rooting intensity. The questions we addressed are: does rooting intensity influence understorey species composition and diversity? Which functional traits are associated with different levels of rooting? We performed a comparative analysis of plant communities in areas with contrasting levels of rooting intensity within a Mediterranean deciduous lowland forest in central Italy. Besides comparing species composition and diversity, we tested the association between species traits and rooting levels through fourth-corner analysis. We found that contrasting levels of rooting were associated to different understorey species composition and evenness, while we observed no significant difference in species richness. In contrast with our expectations, sites with lower rooting returned i) lower evenness values and ii) a higher proportion of species characterized by traits related to resistance or response to herbivory, i.e., spinescence, clonality, endozoochory, underground storage organs, and low height values. Our findings suggest that current vegetation patterns partly depend on the legacy effect of past rooting disturbance, since the areas currently subjected to low rooting intensity were likely to be intensely rooted in the past. These areas may have developed a marked dominance of clonal thorny species that, in turn, inhibited further feeding activities by wild boar.


Circeo National Park Deciduous oak forest Fourth-corner analysis Indicator Species Analysis Ruscus aculeatus Sus scrofa 

Nomenclature for plants

Conti et al. (2005) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material


  1. Abbate, G., S. Bonacquisti, S. Burrascano, E. Giovi, A. Giuliani, F. Pretto and E. Scassellati. 2015. Woody flora as a predictor of vascular plant richness: An insight in Italy. Plant Biosyst. 149: 565–573.CrossRefGoogle Scholar
  2. Anderson, M.J. 2001. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26: 32–46.Google Scholar
  3. Avery, E.T. and E.H. Burkhart. 2002. Forest Measurements. 5th ed. McGraw-Hill Higher Education, New York, N Y.Google Scholar
  4. Ballari, S.A. and M.N. Barrios-Garcia. 2014. A review of wild boar Sus scrofa diet and factors affecting food selection in native and introduced ranges. Mammal. Rev. 44: 124–134.CrossRefGoogle Scholar
  5. Barrios-Garcia, M.N. and S.A. Ballari. 2012. Impact of wild boar (Sus scrofa) in its introduced and native range: a review. Biol. Invasions 14: 2283–2300.CrossRefGoogle Scholar
  6. Bieber, C. and T. Ruf. 2005. Population dynamics in wild boar Sus scrofa: ecology, elasticity of growth rate and implications for the management of pulsed resource consumers. J. Appl. Ecol. 42: 1203–1213.CrossRefGoogle Scholar
  7. Blasi, C., G. Capotorti, R. Copiz, D. Guida, B. Mollo, D. Smiraglia, and L. Zavattero. 2014. Classification and mapping of the ecore-gions of Italy. Plant Biosyst. 148: 1255–1345.CrossRefGoogle Scholar
  8. Blasi, C., L. Filesi, A. Stanisci, R. Frondoni, R. Di Pietro, and M. L. Carranza. 2002. Excursion to the Circeo National Park. Fitosociologia 39: 91–130.Google Scholar
  9. Boitani, L., L. Mattei, D. Nonis and F. Corsi. 1994. Spatial and activity patterns of wild boars in Tuscany, Italy. J. Mammal. 75: 600–612.CrossRefGoogle Scholar
  10. Bratton, S.P. 1975. The Effect of the European Wild Boar, Sus scrofa, on Gray Beech Forest in the Great Smoky Mountains. Ecology 56: 1356–366.CrossRefGoogle Scholar
  11. Brooker, R.W., F.T. Maestre, R.M. Callaway, C.L. Lortie, L.A. Cavieres, G. Kunstler, P. Liancourt, K. Tielboerger, J.M.J. Travis, F. Anthelme, C. Armas, L. Coll, E. Corcket, S. Delzon, E. Forey, Z. Kikvidze, J. Olofsson, F.I. Pugnaire, C.L. Quiroz, P. Saccone, K. Schiffers, M. Seifan, B. Touzard and R. Michalet. 2008. Facilitation in plant communities: the past, the present, and the future. J. Ecol. 96: 18–34.Google Scholar
  12. Burrascano, S., F.M. Sabatini and C. Blasi. 2011. Testing indicators of sustainable forest management on understorey composition and diversity in southern Italy through variation partitioning. Plant Ecol. 212: 829–841.CrossRefGoogle Scholar
  13. Burrascano, S., E. Giarrizzo, S. Bonacquisti, R. Copiz, E. Del Vico, S. Fagiani, A. Mortelliti and C. Blasi. 2015. Quantifying Sus scrofa rooting effects on the understorey of the deciduous broadleaf forests in Castelporziano Estate (Italy). Rendiconti Lincei. 26, Suppl. 3: 317–324.CrossRefGoogle Scholar
  14. Catorci, A., R. Gatti and S. Cesaretti. 2012. Effect of sheep and horse grazing on species and functional composition of sub-Mediterranean grasslands. Appl. Veg. Sci. 15: 459–469.CrossRefGoogle Scholar
  15. Catorci, A., S. Cesaretti and F.M. Tardella. 2014. Effect of tall-grass invasion on the flowering-related functional pattern of submedi-terranean hay-meadows. Plant Biosyst. 148: 1127–1137.CrossRefGoogle Scholar
  16. Champagnon, J., J. Elmberg, M. Guillemain, M. Gauthier-Clerc and J.D. Lebreton. 2012. Conspecifics can be aliens too: A review of effects of restocking practices in vertebrates. J. Nat. Conserv. 20: 231–241.CrossRefGoogle Scholar
  17. Conti, F., G. Abbate, A. Alessandrini and C. Blasi. 2005. An annotated checklist of Italian vascular flora, 1st edn. Palombi Editore, Roma.Google Scholar
  18. Cornelissen, J.H.C., S. Lavorel, E. Garnier, S. Diaz, N. Buchmann, D.E. Gurvich, P.B. Reich, H. ter Steege, H.D. Morgan, M.G.A. van der Heijden, J.G. Pausas and H. Poorter. 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51: 335–380.CrossRefGoogle Scholar
  19. Cuevas, M.F., A. Novillo, C. Campos, M.A. Dacar and R.A. Ojeda. 2010. Food habits and impact of rooting behaviour of the invasive wild boar, Sus scrofa, in a protected area of the Monte Desert, Argentina. J. Arid Environ. 74: 1582–1585.CrossRefGoogle Scholar
  20. Cushman, J.H., T.A. Tierney and J.M. Hinds. 2004. Variable effects of feral pig disturbances on native and exotic plants in a California grassland. Ecol. Appl. 14: 1746–1756.CrossRefGoogle Scholar
  21. Debussche, M., G. Debussche and J. Lepart. 2001. Changes in the vegetation of Quercus pubescens woodland after cessation of coppicing and grazing. J. Veg. Sci. 12: 81–92.CrossRefGoogle Scholar
  22. Dowgiallo, G. and D. Bottini. 1998. Aspetti pedologici del Parco Nazionale del Circeo. In: A. Stanisci and S. Zerunian (eds), Flora e Vegetazine del Parco Nazionale del Circeo. Ministero per le Politiche Agricole, gestione ex A.S.F.D., Sabaudia. pp. 33–46.Google Scholar
  23. Dray, S. and A.B. Dufour. 2007. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 22: 1–20.CrossRefGoogle Scholar
  24. Dray, S. and P. Legendre. 2008. Testing the species traits-environment relationships: the fourth-corner problem revisited. Ecology 89: 3400–3412.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Dufrêne, M. and P. Legendre. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 61: 345–366.Google Scholar
  26. Fagiani, S., D. Fipaldini, L. Santarelli, S. Burrascano, E. Del Vico, E. Giarrizzo, M. Mei, A.V. Taglianti, L. Boitani and A. Mortelliti. 2014. Monitoring protocols for the evaluation of the impact of wild boar (Sus scrofa) rooting on plants and animals in forest ecosystems. Hystrix 25: 31–38.Google Scholar
  27. Gilliam, F.S. 2007. The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience 57: 845–858.CrossRefGoogle Scholar
  28. Gomez, J.M. and J.A. Hodar. 2008. Wild boars (Sus scrofa) affect the recruitment rate and spatial distribution of holm oak (Quercus ilex). For. Ecol. Manag. 256: 1384–1389.CrossRefGoogle Scholar
  29. Haaverstad, O., O. Hjeljord and H.K. Wam. 2014. Wild boar rooting in a northern coniferous forest - minor silviculture impact. Scand. J. Forest Res. 29: 90–95.CrossRefGoogle Scholar
  30. Heinken, T., M. Schmidt, G. von Oheimb, W.U. Kriebitzsch and H. Ellenberg. 2006. Soil seed banks near rubbing trees indicate dispersal of plant species into forests by wild boar. Basic Appl. Ecol. 7: 31–44.CrossRefGoogle Scholar
  31. Hone, J. 2002. Feral pigs in Namadgi National Park, Australia: dynamics, impacts and management. Biol. Conserv. 105: 231–242.CrossRefGoogle Scholar
  32. Hunter, M.L. 1990. Wildlife, Forests and Forestry: Principles of Managing Forests for Biological Diversity. Prentice Hall, Englewood Cliffs.Google Scholar
  33. Ickes, K., C.J. Paciorek and S.C. Thomas. 2005. Impacts of nest construction by native pigs (Sus scrofa) on lowland Malaysian rain forest saplings. Ecology 86: 1540–1547.CrossRefGoogle Scholar
  34. Kattge, J., S. Diaz, S. Lavorel, C. Prentice, P. Leadley et al. 2011. TRY - a global database of plant traits. Global Change Biol. 17: 2905–2935.CrossRefGoogle Scholar
  35. Keddy, P.A. 1992. Assembly and response rules - 2 goals for predictive community ecology. J. Veg. Sci. 3: 157–164.CrossRefGoogle Scholar
  36. Kleyer, M., R.M. Bekker, I.C. Knevel, J.P. Bakker, K. Thompson, M. Sonnenschein, P. Poschlod, J.M. van Groenendael, L. Klimes, J. Klimesova, S. Klotz, G.M. Rusch, M. Hermy, D. Adriaens, G. Boedeltje, B. Bossuyt, A. Dannemann, P. Endels, L. Gotzenberger, J.G. Hodgson, A.K. Jackel, I. Kuhn, D. Kunzmann, W.A. Ozinga, C. Romermann, M. Stadler, J. Schlegelmilch, H. J. Steendam, O. Tackenberg, B. Wilmann, J.H.C. Cornelissen, O. Eriksson, E. Garnier and B. Peco. 2008. The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J. Ecol. 96: 1266–1274.CrossRefGoogle Scholar
  37. Klimesova, J. and F. de Bello. 2009. CLO-PLA: the database of clonal and bud bank traits of Central European flora. J. Veg. Sci. 20: 511–516.CrossRefGoogle Scholar
  38. Lavorel, S., S. Díaz, J.H.C. Cornelissen, E. Garnier, S.P. Harrison, S. McIntyre, J.G. Pausas, N. Pérez-Harguindeguy, C. Roumet and C. Urcelay. 2007. Plant Functional Types: Are We Getting Any Closer to the Holy Grail? In: J. Canadell, D. Pataki and L. Pitelka (eds), Terrestrial Ecosystems in a Changing World. Springer-Verlag, Berlin Heidelberg. pp. 149–164.CrossRefGoogle Scholar
  39. Lavorel, S. and E. Garnier. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16: 545–556.CrossRefGoogle Scholar
  40. Li, L.L., J.B. Shi, J. Wang, Y.M. Gao, L.B. Wang, J.Q. Wang and X. Ying. 2013. Factors influencing wild boar damage in Taohongling National Nature Reserve in China: a model approach. Eur. J. Wildl. Res. 59: 179–184.CrossRefGoogle Scholar
  41. Ma, M., X. Zhou and G. Du. 2013. Effects of disturbance intensity on seasonal dynamics of alpine meadow soil seed banks on the Tibetan Plateau. Plant Soil 369: 283–295.CrossRefGoogle Scholar
  42. Martinez-Palle, E. and G. Aronne. 1999. Flower development and reproductive continuity in Mediterranean Ruscus aculeatus L. (Liliaceae). Protoplasma 208: 58–64.CrossRefGoogle Scholar
  43. Massei, G. and P. Genov. 2004. The environmental impact of wild boar. Galemys 16: 135–145.Google Scholar
  44. Nuttle, T., T.E. Ristau and A.A. Royo. 2014. Long-term biological legacies of herbivore density in a landscape-scale experiment: forest understoreys reflect past deer density treatments for at least 20 years. J. Ecol. 102: 221–228.CrossRefGoogle Scholar
  45. Ohashi, H., M. Saito, R. Horie, H. Tsunoda, H. Noba, H. Ishii, T. Kuwabara, Y. Hiroshige, S. Koike, Y. Hoshino, H. Toda and K. Kaji. 2013. Differences in the activity pattern of the wild boar Sus scrofa related to human disturbance. Eur. J. Wildl. Res. 59: 167–177.CrossRefGoogle Scholar
  46. Onaindia, M., I. Dominguez, I. Albizu, C. Garbisu and I. Amezaga. 2004. Vegetation diversity and vertical structure as indicators of forest disturbance. For. Ecol. Manag. 195: 341–354.CrossRefGoogle Scholar
  47. Paušič, A. and A. Čarni. 2013. Records of past land use are best stored in soil properties. Plant Biosyst. 147: 654–663.CrossRefGoogle Scholar
  48. Perea, R. and L. Gil. 2014. Tree regeneration under high levels of wild ungulates: The use of chemically vs. physically-defended shrubs. For. Ecol. Manag. 312: 47–54.CrossRefGoogle Scholar
  49. Pignatti, S. 1982. Flora d’Italia. Edagricole, Bologna.Google Scholar
  50. Pinna, W., G. Nieddu, G. Moniello and M.G. Cappai. 2007. Vegetable and animal food sorts found in the gastric content of Sardinian Wild Boar (Sus scrofa meridionalis). J. Anim. Physiol. Anim. Nutr. 91: 252–255.CrossRefGoogle Scholar
  51. Royo, A.A. and W.P. Carson. 2006. On the formation of dense under-story layers in forests worldwide: consequences and implications for forest dynamics, biodiversity, and succession. Can. J. For. Res. 36: 1345–1362.CrossRefGoogle Scholar
  52. Sabatini, F.M., S. Burrascano, H. Tuomisto and C. Blasi. 2014a. Ground layer plant species turnover and beta diversity in Southern-European old-growth forests. PLoS ONE 9: e95244.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Sabatini, F.M., J.I. Burton, R.M. Scheller, K.L. Amatangelo and D.J. Mladenoff. 2014b. Functional diversity of ground-layer plant communities in old-growth and managed northern hardwood forests. Appl. Veg. Sci. 17: 398–407.CrossRefGoogle Scholar
  54. Saezroyuela, C. and J.L. Telleria. 1986. The increased population of the wild boar (Sus scrofa L.) in Europe. Mammal. Rev. 16: 97– 101.CrossRefGoogle Scholar
  55. Sandom, C.J., J. Hughes and D.W. Macdonald. 2013. Rewilding the Scottish Highlands: Do wild boar, Sus scrofa, use a suitable foraging strategy to be effective ecosystem engineers? Restor. Ecol. 21: 336–343.CrossRefGoogle Scholar
  56. Schley, L., M. Dufrene, A. Krier and A.C. Frantz. 2008. Patterns of crop damage by wild boar (Sus scrofa) in Luxembourg over a 10-year period. Eur. J. Wildl. Res. 54: 589–599.CrossRefGoogle Scholar
  57. Schmidt, M., K. Sommer, W.U. Kriebitzsch, H. Ellenberg and G. von Oheimb. 2004. Dispersal of vascular plants by game in northern Germany. Part I: Roe deer (Capreolus capreolus) and wild boar (Sus scrofa). Eur. J. Forest Res. 123: 167–176.CrossRefGoogle Scholar
  58. Siemann, E., J.A. Carrillo, C.A. Gabler, R. Zipp and W.E. Rogers. 2009. Experimental test of the impacts of feral hogs on forest dynamics and processes in the southeastern US. For. Ecol. Manag. 258: 546–553.CrossRefGoogle Scholar
  59. Sims, N.K., E.A. John and A.J.A. Stewart. 2014. Short-term response and recovery of bluebells (Hyacinthoides non-scripta) after rooting by wild boar (Sus scrofa). Plant Ecol. 215: 1409–1416.CrossRefGoogle Scholar
  60. Valenzuela, A.E.J., C.B. Anderson, L. Fasola and J.L. Cabello. 2014. Linking invasive exotic vertebrates and their ecosystem impacts in Tierra del Fuego to test theory and determine action. Acta Oecol. 54: 110–118.CrossRefGoogle Scholar
  61. Van Reeuwijk, L.P. (ed.). 2002. Procedures for Soil Analysis, 6th edition. Tech. Pap. 9, ISRIC. Wageningen.Google Scholar
  62. Višnjić, Ć., S. Solaković, F. Mekić, B. Balić, S. Vojniković, M. Dautbašić, S. Gurda, F. Ioras, J. Ratnasingam and I.V. Abrudan. 2013. Comparison of structure, regeneration and dead wood in virgin forest remnant and managed forest on Grmeč Mountain in Western Bosnia. Plant Biosyst. 147: 913–922.CrossRefGoogle Scholar
  63. Welander, J. 2000. Spatial and temporal dynamics of wild boar (Sus scrofa) rooting in a mosaic landscape. J. Zool. 252: 263–271.CrossRefGoogle Scholar
  64. Wirthner, S., M. Schutz, D.S. Page-Dumroese, M.D. Busse, J.W. Kirchner and A.C. Risch. 2012. Do changes in soil properties after rooting by wild boars (Sus scrofa) affect understory vegetation in Swiss hardwood forests? Can. J. For. Res. 42: 585–592.CrossRefGoogle Scholar
  65. Wright, I.J., P.B. Reich, M. Westoby, D.D. Ackerly, Z. Baruch, F. Bongers, J. Cavender-Bares, T. Chapin, J.H.C. Cornelissen, M. Diemer, J. Flexas, E. Garnier, P.K. Groom, J. Gulias, K. Hikosaka, B.B. Lamont, T. Lee, W. Lee, C. Lusk, J.J. Midgley, M.L. Navas, U. Niinemets, J. Oleksyn, N. Osada, H. Poorter, P. Poot, L. Prior, V.I. Pyankov, C. Roumet, S.C. Thomas, M.G. Tjoelker, E.J. Veneklaas and R. Villar. 2004. The worldwide leaf economics spectrum. Nature 428: 821–827.CrossRefGoogle Scholar
  66. Zerunian S. 2005. Studio di fattibilità per la reintroduzione di specie significative e gestione sostenibile del cinghiale nel Parco Nazionale del Circeo, Contributo di Ricerca con atto del 02 Febbraio 2005. Parco Nazionale del Circeo.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2015

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • S. Burrascano
    • 1
    Email author
  • R. Copiz
    • 1
  • E. Del Vico
    • 1
  • S. Fagiani
    • 2
  • E. Giarrizzo
    • 1
  • M. Mei
    • 2
  • A. Mortelliti
    • 2
    • 3
  • F. M. Sabatini
    • 1
    • 4
  • C. Blasi
    • 1
  1. 1.Department of Environmental BiologySapienza University of RomeRomeItaly
  2. 2.Department of Biology and Biotechnology “Charles Darwin”Sapienza University of RomeRomeItaly
  3. 3.Department of Wildlife, Fisheries, and Conservation BiologyUniversity of MaineOronoUSA
  4. 4.Geography DepartmentHumboldt UniversityBerlinGermany

Personalised recommendations