Community Ecology

, Volume 16, Issue 2, pp 223–234 | Cite as

Distributional patterns of endemic, native and alien species along a roadside elevation gradient in Tenerife, Canary Islands

  • G. BacaroEmail author
  • S. Maccherini
  • A. Chiarucci
  • A. Jentsch
  • D. Rocchini
  • D. Torri
  • M. Gioria
  • E. Tordoni
  • S. Martellos
  • A. Altobelli
  • R. Otto
  • C. G. Escudero
  • S. Fernández-Lugo
  • J. M. Fernández-Palacios
  • J. R. Arévalo


Invasion by alien plant species may be rapid and aggressive, causing erosion of local biodiversity. This is particularly true for islands, where natural and anthropogenic corridors promote the rapid spread of invasive plants. Although evidence shows that corridors may facilitate plant invasions, the question of how their importance in the spread of alien species varies along environmental gradients deserves more attention. Here, we addressed this issue by examining diversity patterns (species richness of endemic, native and alien species) along and across roads, along an elevation gradient from sea-level up to 2050 m a.s.l. in Tenerife (Canary Islands, Spain), at multiple spatial scales. Species richness was assessed using a multi-scale sampling design consisting of 59 T-transects of 150 m × 2 m, along three major roads each placed over the whole elevation gradient. Each transect was composed of three sections of five plots each: Section 1 was located on the road edges, Section 2 at intermediate distance, and Section 3 far from the road edge, the latter representing the “native community” less affected by road-specific disturbance. The effect of elevation and distance from roadsides was evaluated for the three groups of species (endemic, native and alien species), using parametric and non-parametric regression analyses as well as additive diversity partitioning. Differences among roads explained the majority of the variation in alien species richness and composition. Patterns in alien species richness were also affected by elevation, with a decline in richness with increasing elevation and no alien species recorded at high elevations. Elevation was the most important factor determining patterns in endemic and native species. These findings confirm that climate filtering reflected in varying patterns along elevational gradients is an important determinant of the richness of alien species (which are not adapted to high elevations), while anthropogenic pressures may explain the richness of alien species at low elevation.


Disturbance Diversity partitioning Invasive species Island biogeography MIREN Plant species richness 



Mountain Invasion Research Network


Permutational Analysis of Variance


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42974_2015_1602223_MOESM1_ESM.pdf (99 kb)
Appendix I. List of plant species recorded along the altitudinal gradient. Only those with appear in 5% or more plots are shown. Biogeographical status, origin, life forms and minimum and maximum altitude at which the species were found are shown. Transformer species are marked with an asterisk. Status: e = endemic; i, introduced; n = native; p = probably introduced. Origin: end = Canary Islands endemic; mac = Macaronesian region endemic; at = Atlantic; af = African; med = Mediterranean; cosm = cosmopolitan; am = American; euras = Eurasiatic; med atl = Mediterranean-Atlantic; as = Asiatic; med euras = Mediterranean-Eurasiatic. Life form: MPh = Meso- or Megaphanerophyte; NPh = Nanophanerophyte; Th = Therophyte; H = Hemicryptophyte; G = Geophyte; Ch = Chamaephyte.


  1. Alexander, J.M., Naylor, B., Poll, M., Edwars, P.J. and Dietz, H. 2009. Plant invasions along mountain roads: the altitudinal amplitude of alien Asteraceae forbs in their native and introduced ranges. Ecography 32: 334–344.CrossRefGoogle Scholar
  2. Alexander, J.M. and Edwards, P.J. 2010. Limits to the niche and range margins of alien species. Oikos 119: 1377–1386.CrossRefGoogle Scholar
  3. Anderson, M.J. 2001. Permutation tests for univariate or multivariate analysis of variance and regression. Can. J. Fish. Aquatic Sci. 58: 626–639.CrossRefGoogle Scholar
  4. Anderson, M.J., Gorley, R.N. and Clarke KR. 2008. PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth, UK.Google Scholar
  5. Arévalo, J.R., Otto, R., Escudero, C., Fernández-Lugo, S., Arteaga, M., Delgado, J. and Fernández-Palacios, J.M. 2010. Do anthropogenic corridors homogenize plant communities at a local scale? A case studied in Tenerife (Canary Islands). Plant Ecol. 209: 23–25.CrossRefGoogle Scholar
  6. Arévalo, J.R. and Fernández-Palacios, J.M. 2005. Gradient analysis of exotic Pinus radiata plantations and potential restoration of natural vegetation in Tenerife, Canary Islands (Spain). Acta Oecol. 27: 1–8.CrossRefGoogle Scholar
  7. Arteaga, M.A., Delgado, J.D., Otto, R., Fernández-Palacios, J.M. and Arévalo, J.R. 2009. How do alien plants distribute along roads on oceanic islands? A case study in Tenerife, Canary Islands. Biol. Invasions 11: 1071–1086.CrossRefGoogle Scholar
  8. Bacaro, G. and Ricotta, C. 2007. A spatially explicit measure of beta-diversity. Community Ecol. 8: 41–46.CrossRefGoogle Scholar
  9. Bacaro, G., Rocchini, D., Bonini, I., Marignani, M., Maccherini, S. and Chiarucci, A. 2008. The role of regional and local scale predictors for plant species richness in Mediterranean forests. Plant Biosyst. 142: 630–642.CrossRefGoogle Scholar
  10. Bacaro, G., Gioria, M. and Ricotta, C. 2012. Testing for difference in beta diversity from plot-to-plot dissimilarities. Ecol. Res. 27: 285–292.CrossRefGoogle Scholar
  11. Bacaro, G., Gioria, M. and Ricotta, C. 2013. Beta diversity reconsidered. Ecol. Res. 28: 537–540.CrossRefGoogle Scholar
  12. Barni, E., Bacaro, G., Falzolai, S., Spanna, F. and Siniscalco, C. 2012. Establishing climatic constraints shaping the distribution of alien plant species along the elevation gradient in the Alps. Plant Ecol. 213: 757–767.CrossRefGoogle Scholar
  13. Becker, T., Dietz, H., Billeter, R., Buschmann, H. and Edwards, P.J. 2005. Altitudinal distribution of alien plant species in the Swiss Alps. Persp. Plant Ecol. Evol. Syst. 7: 173–183.CrossRefGoogle Scholar
  14. Chiarucci, A., Bacaro, G., Arévalo, J.R., Delgado, J.D. and Fernández-Palacios, J.M. 2010. Additive partitioning as a tool for investigating the flora diversity in oceanic archipelagos. Persp. Plant Ecol. Evol. Syst. 12: 83–91.CrossRefGoogle Scholar
  15. Chiarucci, A., Bacaro, G. and Rocchini, D. 2008. Quantifying plant species diversity in a Natura 2000 network: Old ideas and new proposals. Biol. Conserv. 141: 2608–2618.CrossRefGoogle Scholar
  16. Chiarucci, A., Bacaro, G., Triantis, A.K. and Fernández-Palacios, J.M. 2011. Biogeographical determinants of pteridiophytes and spermatophytes on oceanic archipelagos. Syst. Biodivers. 9: 191–201.CrossRefGoogle Scholar
  17. Clarke, K.R. and Gorley, R.N. 2006. PRIMER V6: user manual/tutorial. PRIMER-E Ltd, Plymouth, UK.Google Scholar
  18. Courchamp, F., Chapuis, J.L. and Pascal, M. 2003. Mammal invaders on islands: impact, control and control impact. Biol. Rev. 78: 347–383.CrossRefGoogle Scholar
  19. Crist, T.O. and Veech, J.A. 2006. Additive partitioning of rarefaction curves and species-area relationships: unifying alpha-, beta- and gamma-diversity with sample size and habitat area. Ecol. Lett. 9: 923–932.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Díaz-Díaz, R., Loague, K. and Notario, J.S. 1999. An assessment of agrochemical leaching potentials for Tenerife. J. Contaminant Hydrol. 36: 1–30.CrossRefGoogle Scholar
  21. Ebenhard, T. 1988. Introduced birds and mammals and their ecological effects. Swedish Wildlife Res. 13: 1–107.Google Scholar
  22. Evans, K.L., Warren, P.H. and Gaston, K.J. 2005. Species-energy relationships at the macroecological scale: a review of the mechanisms. Biol. Rev. 80: 1–25.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fernández-Palacios, J.M. 1992. Climatic response of plant species on Tenerife (Canary Island). J. Veg. Sci. 3: 595–602.CrossRefGoogle Scholar
  24. Gering, J.C., Crist, T.O. and Veech J.A. 2003. Additive partitioning of species diversity across multiple spatial scales: implications for regional conservation of biodiversity. Conserv. Biol. 17: 488–499.CrossRefGoogle Scholar
  25. Gioria, M., Bacaro, G. and Feehan, J. 2010. Identifying the drivers of pond biodiversity: the agony of model selection. Community Ecol. 11: 179–186.CrossRefGoogle Scholar
  26. Irl, S.D.H., Steinbauer, M.J., Epperlein, L., Harter, D., Jentsch, A., Pätz, S., Wohlfart, C.H. and Beierkuhnlein, C. 2014. The Hitchhiker’s guide to endemism - biodiversity and endemic species in roadside and natural island vegetation. Biodivers. Conserv. 23: 2273–2287.CrossRefGoogle Scholar
  27. Irl, S.D.H., Harter, D.E.V., Steinbauer, M.J., Gallego Puyol, D., Fernández-Palacios, J.M., Jentsch, A. and Beierkuhnlein, C. 2015. Climate vs topography - spatial patterns of plant species diversity and endemism on a high elevation island. J. Ecol. 103: 1621–1633.CrossRefGoogle Scholar
  28. Izquierdo, I., Martín, J.L., Zurita, N. and Arechavaleta, M. 2004. Consejería de Medio Ambiente y Ordenación Territorial, Gobierno de Canarias. Santa Cruz de Tenerife, Santa Cruz de Tenerife, Spain.Google Scholar
  29. Jakobs, G., Kueffer, C. and Daehler, C.C. 2010. Introduced weed richness across altitudinal gradients in Hawaii: humps, humans and water-energy dynamics. Biol. Invasions 12: 4019–4031.CrossRefGoogle Scholar
  30. Jentsch, A. and Beierkuhnlein, C. 2003. Global climate change and local disturbance regimes as interacting drivers for shifting altitudinal vegetation patterns in high mountains. Erdkunde 57: 216–231.CrossRefGoogle Scholar
  31. Jost, L. 2007. Partitioning diversity into independent alpha and beta components. Ecology 88: 2427–2439.CrossRefGoogle Scholar
  32. Kitayama, K. and Mueller-Dombois, D. 1995. Biological invasion on an oceanic island mountain: Do alien plant species have wider ecological ranges than native species? J. Veg. Sci. 6: 667–674.CrossRefGoogle Scholar
  33. Körner, C. 2007. The use of “altitude” in ecological research. Trends Ecol. Evol. 22: 569–574.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lande, R. 1996. Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76: 5–13.CrossRefGoogle Scholar
  35. Marini, L., Gaston, K.J., Prosser, F. and Hulme, P.E. 2009. Contrasting response of native and alien plant species richness to environmental energy and human impact along alpine elevation gradients. Global Ecol. Biogeogr. 18: 652–661.CrossRefGoogle Scholar
  36. Marini, L., Bertolli, A., Bona, E., Federici, G., Martini, F., Prosser, F. and Bommarco, R. 2013. Beta-diversity patterns elucidate mechanisms of alien plant invasion in mountains. Global Ecol. Biogeogr. 22: 450–460.CrossRefGoogle Scholar
  37. McCullagh, P. and Nelder, J.A. 1989. Generalized Linear Models. Second Edition. Chapman and Hall/CRC, Boca Raton.Google Scholar
  38. McDougall, K.L., Morgan, J.W., Walsh, N.G. and Williams, R.J. 2005. Plant invasions in treeless vegetation of the Australian Alps. Persp. Plant Ecol. Evol. Syst. 7: 159–171.CrossRefGoogle Scholar
  39. Nogués-Bravo, D., Araújo, M.B., Romdal, T. and Rahbek, C. 2008. Scale effects and human impact on the elevational species richness gradients. Nature 453: 216–220.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Otto, R., Arteaga, M.A., Delgado, J.D., Arévalo, J.R., Blandino, C. and Fernández-Palacios, J.M. 2014. Road edge effect and elevation pattern of native and alien plants on an oceanic island (Tenerife, Canary Island). Folia Geobot. 49: 65–82.CrossRefGoogle Scholar
  41. Pauchard, A. and Alaback, P.B. 2004. Influence of elevation, land use, and landscape context on patterns of alien plant invasions along roadsides in protected areas of south-central Chile. Conserv. Biol. 18: 238–248.CrossRefGoogle Scholar
  42. Pauchard, A., Kueffer, C., Dietz, H., Daehler, C.C., Alexander, J., Edwards, P.J., Arevalo, J.R., Cavieres, L.A., Guisan, A., Haider, S., Jakobs, G., McDougall, K., Millar, C.I., Naylor, B.J., Parks, C.G., Rew, L.J. and Seipel, T. 2009. Ain’t no mountain high enough: plant invasions reaching new elevations. Frontiers Ecol. Environ. 7: 479–486.CrossRefGoogle Scholar
  43. Richardson, D.M. and Pyšek, P. 2012. Naturalization of introduced plants: ecological drivers of biogeographical patterns. New Phytol. 196: 383–396.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Rodríguez, A. and Mora, J.L. 2000. Los suelos. In: G. Morales and R. Pérez (eds), Gran atlas temático de Canarias. Interinsular Canaria. S/C de Tenerife. pp. 107–120.Google Scholar
  45. Schmera, D. and Podani, J. 2013. Components of beta diversity in hierarchical sampling designs: A new approach. Ecol. Indic. 26: 126–136.CrossRefGoogle Scholar
  46. Siniscalco, C., Barni, E. and Bacaro, G. 2011. Non-native species distribution along the elevation gradient in the western Italian Alps. Plant Biosyst. 145: 150–158.CrossRefGoogle Scholar
  47. Spellerberg, I.F. 1998. Ecological effects of roads and traffc: a literature review. Global Ecol. Biogeogr. Lett. 7: 317–333.CrossRefGoogle Scholar
  48. Steinbauer, M. J., Irl, S. D. and Beierkuhnlein, C. 2013. Elevation-driven ecological isolation promotes diversiflcation on Mediterranean islands. Acta Oecol. 47: 52–56.CrossRefGoogle Scholar
  49. Trombulak, S.C. and Frissell, C.A. 2000. Review of ecological effects of roads on terrestrial and aquatic communities. Conserv. Biol. 14: 18–30.CrossRefGoogle Scholar
  50. Veech, J.A. and Crist, T.O. 2007a. PARTITION: software for hierarchical additive partitioning of species diversity, version 2.0.Google Scholar
  51. Veech, J.A. and Crist, T.O. 2007b. Habitat and climate heterogeneity maintain beta-diversity of birds among landscapes within ecoregions. Global Ecol. Biogeogr. 16: 650–656.CrossRefGoogle Scholar
  52. Wagner, H.H., Wildi, O. and Ewald, K.C. 2000. Additive partitioning of plant species diversity in an agricultural mosaic landscape. Landsc. Ecol. 15: 219–227.CrossRefGoogle Scholar
  53. Whittaker, R.H. 1972. Evolution and measurement of species diversity. Taxon 21: 213–251.CrossRefGoogle Scholar
  54. Whittaker, R.J. and Fernández-Palacios, J.M. 2007. Island Biogeography. Ecology, Evolution and Conservation. Oxford University Press, New York.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2015

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • G. Bacaro
    • 1
    Email author
  • S. Maccherini
    • 2
  • A. Chiarucci
    • 3
  • A. Jentsch
    • 4
  • D. Rocchini
    • 5
  • D. Torri
    • 6
  • M. Gioria
    • 7
  • E. Tordoni
    • 1
  • S. Martellos
    • 1
  • A. Altobelli
    • 1
  • R. Otto
    • 8
  • C. G. Escudero
    • 8
  • S. Fernández-Lugo
    • 8
  • J. M. Fernández-Palacios
    • 8
  • J. R. Arévalo
    • 8
  1. 1.Department of Life SciencesUniversity of TriesteTriesteItaly
  2. 2.BIOCONNET, Biodiversity and Conservation Network, Department of Environmental Science “G. Sarfatti”University of SienaSienaItaly
  3. 3.Department of Biological, Geological and Environmental SciencesAlma Mater Studiorum University of BolognaBolognaItaly
  4. 4.Department of Disturbance Ecology, Bayreuth Centre for Ecology and Environmental Research BayCEERUniversity of BayreuthBayreuthGermany
  5. 5.Department of Biodiversity and Molecular EcologyResearch and Innovation Centre, Fondazione Edmund MachS. Michele all’Adige (TN)Italy
  6. 6.CNR-IRPI, Istituto di Ricerca per la Protezione IdrogeologicaPerugiaItaly
  7. 7.Institute of BotanyThe Czech Academy of SciencesPrůhoniceCzech Republic
  8. 8.Departamento EcologíaUniversidad de La LagunaLa LagunaSpain

Personalised recommendations