Community Ecology

, Volume 16, Issue 2, pp 135–146 | Cite as

The influence of coyote on Canada lynx populations assessed at two different spatial scales

  • A. GuillaumetEmail author
  • J. Bowman
  • D. Thornton
  • D. L. Murray


Previous studies have suggested that the attenuation of Canada lynx (Lynx canadensis) cyclic dynamics with decreasing latitude may be the consequence of a reduced specialization on the lynx’s primary prey, snowshoe hares (Lepus americanus). However, intraguild competitive interactions remain largely unexplored in situations where the temporal dynamics of food resources is pronounced, and lynx populations in the south of their distribution may be negatively affected by interspecific competition with other carnivores. In this paper, we used spectral analysis of fur harvest data collected at the state (US) and province (Canada) level to explore the spatial gradient of cyclic dynamics in lynx. Although some patterns were consistent with the ‘diet specialization’ hypothesis, we found that temporal variance of cycling propensity peaked at mid-latitudes, where transient, non-cyclic periods, coexisted with regular 10-year cycles. In these mid-latitude zones, non-cyclic periods did not coincide with loss of snowshoe hare cycling as demonstrated by historical records, and were not more frequent in recent decades as could be expected under a ‘climatic forcing’ scenario. Instead, we show that non-cyclic periods tended to coincide with periods of high coyote (Canis latrans) abundance and periods when coyotes apparently tracked snowshoe hare abundance as suggested by significant 10-year cycles lagging one or two years behind hare peaks. We used landscape-scale (trapline) fur harvest returns from five provinces in Canada to further probe the importance of interspecific competition in Canada lynx population dynamics. Accounting for coyote distribution and abundance did not bring additional explanatory and predictive power to models based solely on environmental and autecological predictors, suggesting that competition with coyote is not a force driving population abundance and cyclicity among lynx. We discuss the possible factors behind the apparent lack of consistency across spatial scales and recommend that further studies examine species interactions at a smaller (local) scale.


Canada lynx Coyote Distribution models Fur harvest Interspecific competition Population trends Spectral analysis Time-series 



Generalized Linear Model


inflation-adjusted + detrended harvest number


inflation-adjusted harvest number


Highest Posterior Density


Restricted Loglikelihood Ratio Test

Supplementary material

42974_2015_1602135_MOESM1_ESM.pdf (811 kb)
Supporting information


  1. Allouche, O., A. Tsoar and R. Kadmon. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43: 1223–1232.CrossRefGoogle Scholar
  2. Alpargu, G. and J. Buonaccorsi. 2009. A model-free test for independence between time series. J. Agric. Biol. Envir. S. 14, 115–132.CrossRefGoogle Scholar
  3. Amarasekare, P. 2003. Competitive coexistence in spatially structured environments: a synthesis. Ecol. Lett. 6: 1109–1122.CrossRefGoogle Scholar
  4. Araujo, M. B. and M. Luoto. 2007. The importance of biotic interactions for modelling species distributions under climate change. Global Ecol. Biogeogr. 16: 743–753.CrossRefGoogle Scholar
  5. Bayne, E. E., S. Boutin and R. A. Moses. 2008. Ecological factors influencing the spatial pattern of Canada lynx relative to its southern range edge in Alberta, Canada. Can. J. Zool. 86: 1189–1197.CrossRefGoogle Scholar
  6. Boonstra, R. and C. J. Krebs. 2012. Population dynamics of red-backed voles (Myodes) in North America. Oecologia 168: 601–620.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Boumez, J. B. 1989. Coyote Control in Alberta. Great Plains Wildlife Damage Control Workshop. 9: 40–43.Google Scholar
  8. Brommer, J. E., H. Pietiainen, K. Ahola, P. Karell, T. Karstinen and H. Kolunen. 2010. The return of the vole cycle in southern Finland refutes the generality of the loss of cycles through ‘climatic forcing’. Global Change Biol. 16: 577–586.CrossRefGoogle Scholar
  9. Buonaccorsi, J. P., J. S. Elkintion, S. R. Evans and A. M. Liebhold. 2001. Measuring and testing for spatial synchrony. Ecology 82: 1668–1679.CrossRefGoogle Scholar
  10. Buskirk, S. W., L. F. Ruggiero and C. J. Krebs. 2000. Habitat fragmentation and interspecific competition: Implications for lynx conservation. In: L.F. Ruggiero et al. (eds), Ecology and Conservation of Lynx in the United States. University Press of Colorado, Boulder, Colorado. pp. 83–100.Google Scholar
  11. Cattadori, I. M, D. T. Haydon, S. J. Thirgood and P. J. Hudson. 2003. Are indirect measures of abundance a useful index of population density? The case of red grouse harvesting. Oikos 100: 439–446.CrossRefGoogle Scholar
  12. Davidson, R. and J. G. MacKinnon. 2007. Bootstrap Methods In: K. Patterson and T. C. Mills (eds), Econometrics. Chapter 25 of Palgrave Handbooks of Econometrics: Vol. 1 Econometric Theory. Palgrave MacMillan, Basingstoke.Google Scholar
  13. Estay, S. A., A. A. Albornoz, M. Lima, M. S. Boyce and N. C. Stenseth. 2011. A simultaneous test of synchrony causal factors in muskrat and mink fur returns at different scales across Canada. PLOS ONE 6: e27766.CrossRefGoogle Scholar
  14. Fedriani, J. M., T. R. Fuller, R. M. Sauvajot and E. C. York. 2000. Competition and intraguild predation among three sympatric carnivores. Oecologia 125: 258–270.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Glynn, E. F., J. Chen and A. R. Mushegian. 2006. Detecting periodic patterns in unevenly spaced gene expression time series using Lomb-Scargle periodograms. Bioinformatics 22: 310–316.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gosselink, T. E., T. R. Van Deelen, R. E. Warner and M. J. Joselyn. 2003. Temporal habitat partitioning and spatial use of coyotes and red foxes in East-Central Illinois. J. Wild. Manage. 67: 90–103.CrossRefGoogle Scholar
  17. Guisan, A. and N. E. Zimmermann. 2000. Predictive habitat distribution models in ecology. Ecol. Model. 135: 147–186.CrossRefGoogle Scholar
  18. Guillaumet, A., J. B. Ferdy, E. Desmarais, B. Godelle and P.-A. Crochet. 2008. Testing Bergmann’s rule in the presence of potentially confounding factors: a case study with three species of Galerida larks in Morocco. J. Biogeogr. 35: 579–591CrossRefGoogle Scholar
  19. Henden, J.-A., R. A. Ims, N. G. Yoccoz, P. Hellstrom and A. Angerbjorn. 2010. Strength of asymmetric competition between predators in food webs ruled by fluctuating prey: the case of foxes in tundra. Oikos 119: 27–34.CrossRefGoogle Scholar
  20. Humbert, J.-Y., S. Mills, J. S. Horne and B. Dennis. 2009. A better way to estimate population trends. Oikos 118: 1940–1946.CrossRefGoogle Scholar
  21. Ims, R.A., J.-A. Henden and S. T. Killengreen. 2008. Collapsing population cycles. Trends Ecol. Evol. 23: 79–86.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kamler, J. F., W. B. Ballard, R. L. Gilliland, P. R. II Lemons and K. Mote. 2003. Impacts of coyotes on swift foxes in Northwestern Texas. J. Wildlife Manage. 67: 317–323CrossRefGoogle Scholar
  23. Kapfer, P. M. and K. B. Potts. 2012. Socioeconomic and ecological correlates of bobcat harvest in Minnesota. J. Wildlife Manage. 76: 237–242.CrossRefGoogle Scholar
  24. Karl, T. R., Melillo, J. M., T. C. Peterson et al. 2009. Global Climate Change Impacts in the United States. Cambridge University Press, Cambridge.Google Scholar
  25. Krebs, C. J., R. Boonstra, S. Boutin and A. R. E. Sinclair. 2001. What drives the 10-year cycle of snowshoe hares. BioScience 51: 25–35.CrossRefGoogle Scholar
  26. Lavoie, M., P.-Y. Collin, F. Lemieux, H. Jolicoeur, P. Canac-Marquis and S. Lariviere. 2009. Understanding fluctuations in bobcat harvest at the northern limit of their range. J. Wildlife Manage. 73: 870–875.CrossRefGoogle Scholar
  27. Levi, T. and C. C. Wilmers. 2012. Wolves-coyotes-foxes: a cascade among carnivores. Ecology 93: 921–929.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Litvaitis, J. A and D. J. Harrison. 1989. Bobcat-coyote niche relationships during a period of coyote population increase. Can. J. Zool. 67: 1180–1188.CrossRefGoogle Scholar
  29. McKelvey, S. K., E. C. Lofroth, K. P. Copeland, K. B. Aubry and A. J. Magoun. 2010. Comments on Brodie and Post: climate-driven declines in wolverine populations: causal connection or spurious correlation? Popul. Ecol. 53: 263–266.CrossRefGoogle Scholar
  30. Moore, G.C. and G.R. Parker. 1992. Colonization by the eastern coyote (Canis latrans). In: A.H. Boyer (ed.), Ecology and Management of the Eastern Coyote. Wildlife Research Unit, University of New Brunswick, Fredericton, New Brunswick, Canada. pp. p 23–37.Google Scholar
  31. Murray, D. L. 2000. A geographic analysis of snowshoe hare population demography. Can. J. Zool. 78: 1207–1217.CrossRefGoogle Scholar
  32. Murray, D. L., T. D. Steury and J. D. Roth. 2008. Canada lynx research and conservation needs in the southern range: Another kick at the cat. J. Wildlife Manage. 72: 1463–1472.CrossRefGoogle Scholar
  33. Nelson, J. L., B. L. Cypher, C. D. Bjurlin and S. Creel. 2007. Effects of habitat on competition between kit foxes and coyotes. J. Wildlife Manage. 71: 1467–1475.CrossRefGoogle Scholar
  34. Novak, M., M. E. Obbard, J. G. Jones, R. Newman, A. Booth, A. J. Satterthwaite and G. Linscombe. 1987. Furbearer Harvests in North America, 1600-1984. Ontario Ministry of Natural Resources, Toronto, Canada.Google Scholar
  35. O’Donoghue M., S. Boutin, C. J. Krebs and E. J. Hofer. 1997. Numerical responses of coyotes and lynx to the snowshoe hare cycle. Oikos 80: 150–162.CrossRefGoogle Scholar
  36. O’Donoghue M., S. Boutin, C. J. Krebs, G. Zuleta, D. L. Murray and E. J. Hofer. 1998. Functional responses of coyotes and lynx to the snowshoe hare cycle. Ecology 79: 1193–1208.CrossRefGoogle Scholar
  37. Parker, G. R. 1995. Eastern Coyote: The Story of its Success. Nimbus Publishing, Halifax, Nova Scotia.Google Scholar
  38. Peacock, E. and D. L. Garshelis. 2006. Comment on “On the Regulation of Populations of Mammals, Birds, Fish, and Insects” IV. Science 313: 45.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Peers, M. J. L., D. H. Thornton and D. L. Murray. 2013 Evidence for large-scale effects of competition: niche displacement in Canada lynx and bobcat. Proc. R. Soc. B, 280: 20132495.CrossRefGoogle Scholar
  40. Poole, K. G. 2003. A review of the Canada lynx, Lynx canadensis, in Canada. Can. Field Nat. 117: 360–376.CrossRefGoogle Scholar
  41. Ranta E., J. Lindström, H. Linden and P. Helle. 2008. How reliable are harvesting data for analyses of spatio-temporal population dynamics? Oikos, 117: 1461–1468.CrossRefGoogle Scholar
  42. R Development Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  43. Ripple, W. J., A. J. Wirsing, R. L.Beschta and S. W. Buskirk. 2011. Can restoring wolves aid in lynx recovery. Wildlife Soc. B. 35: 514–518.CrossRefGoogle Scholar
  44. Ritchie E. G. and C. N. Johnson. 2009. Predator interactions, mesopredator release and biodiversity conservation. Ecol. Lett. 12: 982–998.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Roth, J. D., J. D. Marshall, D. L. Murray, D. M. Nickerson and T. D. Steury. 2007. Geographical gradients in diet affect population dynamics of Canada lynx. Ecology 88: 2736–2743.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Row, J. R., P. J. Wilson and D. L. Murray. 2014. Anatomy of a population cycle: the role of density dependence and demographic variability on numerical instability and periodicity. J. Anim Ecol. 83: 800–812.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Scheipl, F., S. Greven and H. Kuchenhoff. 2008. Size and power of tests for a zero random effect variance or polynomial regression in additive and linear mixed models. Comput Stat. Data Anal. 52: 3283–3299.CrossRefGoogle Scholar
  48. Smith, C. H. 1983. Spatial trends in Canadian snowshoe hare, Lepus americanus, population cycles. Can. Field Nat. 97: 151–160.Google Scholar
  49. Todd, A. W., L. B. Keith and C. A. Fischer. 1981. Population ecology of coyotes during a fluctuation of snowshoe hares. J. Wildlife Manage. 45: 629–640.CrossRefGoogle Scholar
  50. US Fish and Wildlife 2000. 50 CFR Part 17 - Endangered and Threatened Wildlife and Plants; Determination of Threatened Status for the Contiguous U.S. Distinct Population Segment of the Canada Lynx and Related Rule; Final Rule. Available at
  51. Vashon, J. H., A. L. Meehan, W. J. Jakubas, J. F. Organ, A. D. Vashon, C. R. McLaughlin, G. J. Matula, Jr. and S. M. Crowley. 2008. Spatial ecology of a Canada lynx population in northern Maine. J. Wildlife Manage. 72: 1479–1487.CrossRefGoogle Scholar
  52. Weinstein, M. S. 1977. The hares, lynx, and trappers. Am. Nat. 111: 806–808.CrossRefGoogle Scholar
  53. Zhang, X., Brown, R., Vincent, L., Skinner, W., Feng, Y. and E. Mekis. 2011. Canadian Climate Trends, 1950–2007. Canadian Biodiversity: Ecosystem Status and Trends 2010, Technical Thematic Report No. 5. Canadian Councils of Resource Ministers. Ottawa, ON.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2015

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • A. Guillaumet
    • 1
    Email author
  • J. Bowman
    • 2
  • D. Thornton
    • 1
  • D. L. Murray
    • 1
  1. 1.Department of BiologyTrent UniversityPeterboroughCanada
  2. 2.Ontario Ministry of Natural ResourcesTrent UniversityPeterboroughCanada

Personalised recommendations