The influence of coyote on Canada lynx populations assessed at two different spatial scales

Abstract

Previous studies have suggested that the attenuation of Canada lynx (Lynx canadensis) cyclic dynamics with decreasing latitude may be the consequence of a reduced specialization on the lynx’s primary prey, snowshoe hares (Lepus americanus). However, intraguild competitive interactions remain largely unexplored in situations where the temporal dynamics of food resources is pronounced, and lynx populations in the south of their distribution may be negatively affected by interspecific competition with other carnivores. In this paper, we used spectral analysis of fur harvest data collected at the state (US) and province (Canada) level to explore the spatial gradient of cyclic dynamics in lynx. Although some patterns were consistent with the ‘diet specialization’ hypothesis, we found that temporal variance of cycling propensity peaked at mid-latitudes, where transient, non-cyclic periods, coexisted with regular 10-year cycles. In these mid-latitude zones, non-cyclic periods did not coincide with loss of snowshoe hare cycling as demonstrated by historical records, and were not more frequent in recent decades as could be expected under a ‘climatic forcing’ scenario. Instead, we show that non-cyclic periods tended to coincide with periods of high coyote (Canis latrans) abundance and periods when coyotes apparently tracked snowshoe hare abundance as suggested by significant 10-year cycles lagging one or two years behind hare peaks. We used landscape-scale (trapline) fur harvest returns from five provinces in Canada to further probe the importance of interspecific competition in Canada lynx population dynamics. Accounting for coyote distribution and abundance did not bring additional explanatory and predictive power to models based solely on environmental and autecological predictors, suggesting that competition with coyote is not a force driving population abundance and cyclicity among lynx. We discuss the possible factors behind the apparent lack of consistency across spatial scales and recommend that further studies examine species interactions at a smaller (local) scale.

Abbreviations

GLM:

Generalized Linear Model

IAD-N:

inflation-adjusted + detrended harvest number

IA-N:

inflation-adjusted harvest number

HPD:

Highest Posterior Density

RLRT:

Restricted Loglikelihood Ratio Test

References

  1. Allouche, O., A. Tsoar and R. Kadmon. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43: 1223–1232.

    Article  Google Scholar 

  2. Alpargu, G. and J. Buonaccorsi. 2009. A model-free test for independence between time series. J. Agric. Biol. Envir. S. 14, 115–132.

    Article  Google Scholar 

  3. Amarasekare, P. 2003. Competitive coexistence in spatially structured environments: a synthesis. Ecol. Lett. 6: 1109–1122.

    Article  Google Scholar 

  4. Araujo, M. B. and M. Luoto. 2007. The importance of biotic interactions for modelling species distributions under climate change. Global Ecol. Biogeogr. 16: 743–753.

    Article  Google Scholar 

  5. Bayne, E. E., S. Boutin and R. A. Moses. 2008. Ecological factors influencing the spatial pattern of Canada lynx relative to its southern range edge in Alberta, Canada. Can. J. Zool. 86: 1189–1197.

    Article  Google Scholar 

  6. Boonstra, R. and C. J. Krebs. 2012. Population dynamics of red-backed voles (Myodes) in North America. Oecologia 168: 601–620.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Boumez, J. B. 1989. Coyote Control in Alberta. Great Plains Wildlife Damage Control Workshop. 9: 40–43.

    Google Scholar 

  8. Brommer, J. E., H. Pietiainen, K. Ahola, P. Karell, T. Karstinen and H. Kolunen. 2010. The return of the vole cycle in southern Finland refutes the generality of the loss of cycles through ‘climatic forcing’. Global Change Biol. 16: 577–586.

    Article  Google Scholar 

  9. Buonaccorsi, J. P., J. S. Elkintion, S. R. Evans and A. M. Liebhold. 2001. Measuring and testing for spatial synchrony. Ecology 82: 1668–1679.

    Article  Google Scholar 

  10. Buskirk, S. W., L. F. Ruggiero and C. J. Krebs. 2000. Habitat fragmentation and interspecific competition: Implications for lynx conservation. In: L.F. Ruggiero et al. (eds), Ecology and Conservation of Lynx in the United States. University Press of Colorado, Boulder, Colorado. pp. 83–100.

    Google Scholar 

  11. Cattadori, I. M, D. T. Haydon, S. J. Thirgood and P. J. Hudson. 2003. Are indirect measures of abundance a useful index of population density? The case of red grouse harvesting. Oikos 100: 439–446.

    Article  Google Scholar 

  12. Davidson, R. and J. G. MacKinnon. 2007. Bootstrap Methods In: K. Patterson and T. C. Mills (eds), Econometrics. Chapter 25 of Palgrave Handbooks of Econometrics: Vol. 1 Econometric Theory. Palgrave MacMillan, Basingstoke.

    Google Scholar 

  13. Estay, S. A., A. A. Albornoz, M. Lima, M. S. Boyce and N. C. Stenseth. 2011. A simultaneous test of synchrony causal factors in muskrat and mink fur returns at different scales across Canada. PLOS ONE 6: e27766.

    Article  CAS  Google Scholar 

  14. Fedriani, J. M., T. R. Fuller, R. M. Sauvajot and E. C. York. 2000. Competition and intraguild predation among three sympatric carnivores. Oecologia 125: 258–270.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Glynn, E. F., J. Chen and A. R. Mushegian. 2006. Detecting periodic patterns in unevenly spaced gene expression time series using Lomb-Scargle periodograms. Bioinformatics 22: 310–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gosselink, T. E., T. R. Van Deelen, R. E. Warner and M. J. Joselyn. 2003. Temporal habitat partitioning and spatial use of coyotes and red foxes in East-Central Illinois. J. Wild. Manage. 67: 90–103.

    Article  Google Scholar 

  17. Guisan, A. and N. E. Zimmermann. 2000. Predictive habitat distribution models in ecology. Ecol. Model. 135: 147–186.

    Article  Google Scholar 

  18. Guillaumet, A., J. B. Ferdy, E. Desmarais, B. Godelle and P.-A. Crochet. 2008. Testing Bergmann’s rule in the presence of potentially confounding factors: a case study with three species of Galerida larks in Morocco. J. Biogeogr. 35: 579–591

    Article  Google Scholar 

  19. Henden, J.-A., R. A. Ims, N. G. Yoccoz, P. Hellstrom and A. Angerbjorn. 2010. Strength of asymmetric competition between predators in food webs ruled by fluctuating prey: the case of foxes in tundra. Oikos 119: 27–34.

    Article  Google Scholar 

  20. Humbert, J.-Y., S. Mills, J. S. Horne and B. Dennis. 2009. A better way to estimate population trends. Oikos 118: 1940–1946.

    Article  Google Scholar 

  21. Ims, R.A., J.-A. Henden and S. T. Killengreen. 2008. Collapsing population cycles. Trends Ecol. Evol. 23: 79–86.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kamler, J. F., W. B. Ballard, R. L. Gilliland, P. R. II Lemons and K. Mote. 2003. Impacts of coyotes on swift foxes in Northwestern Texas. J. Wildlife Manage. 67: 317–323

    Article  Google Scholar 

  23. Kapfer, P. M. and K. B. Potts. 2012. Socioeconomic and ecological correlates of bobcat harvest in Minnesota. J. Wildlife Manage. 76: 237–242.

    Article  Google Scholar 

  24. Karl, T. R., Melillo, J. M., T. C. Peterson et al. 2009. Global Climate Change Impacts in the United States. Cambridge University Press, Cambridge.

    Google Scholar 

  25. Krebs, C. J., R. Boonstra, S. Boutin and A. R. E. Sinclair. 2001. What drives the 10-year cycle of snowshoe hares. BioScience 51: 25–35.

    Article  Google Scholar 

  26. Lavoie, M., P.-Y. Collin, F. Lemieux, H. Jolicoeur, P. Canac-Marquis and S. Lariviere. 2009. Understanding fluctuations in bobcat harvest at the northern limit of their range. J. Wildlife Manage. 73: 870–875.

    Article  Google Scholar 

  27. Levi, T. and C. C. Wilmers. 2012. Wolves-coyotes-foxes: a cascade among carnivores. Ecology 93: 921–929.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Litvaitis, J. A and D. J. Harrison. 1989. Bobcat-coyote niche relationships during a period of coyote population increase. Can. J. Zool. 67: 1180–1188.

    Article  Google Scholar 

  29. McKelvey, S. K., E. C. Lofroth, K. P. Copeland, K. B. Aubry and A. J. Magoun. 2010. Comments on Brodie and Post: climate-driven declines in wolverine populations: causal connection or spurious correlation? Popul. Ecol. 53: 263–266.

    Article  Google Scholar 

  30. Moore, G.C. and G.R. Parker. 1992. Colonization by the eastern coyote (Canis latrans). In: A.H. Boyer (ed.), Ecology and Management of the Eastern Coyote. Wildlife Research Unit, University of New Brunswick, Fredericton, New Brunswick, Canada. pp. p 23–37.

    Google Scholar 

  31. Murray, D. L. 2000. A geographic analysis of snowshoe hare population demography. Can. J. Zool. 78: 1207–1217.

    Article  Google Scholar 

  32. Murray, D. L., T. D. Steury and J. D. Roth. 2008. Canada lynx research and conservation needs in the southern range: Another kick at the cat. J. Wildlife Manage. 72: 1463–1472.

    Article  Google Scholar 

  33. Nelson, J. L., B. L. Cypher, C. D. Bjurlin and S. Creel. 2007. Effects of habitat on competition between kit foxes and coyotes. J. Wildlife Manage. 71: 1467–1475.

    Article  Google Scholar 

  34. Novak, M., M. E. Obbard, J. G. Jones, R. Newman, A. Booth, A. J. Satterthwaite and G. Linscombe. 1987. Furbearer Harvests in North America, 1600-1984. Ontario Ministry of Natural Resources, Toronto, Canada.

    Google Scholar 

  35. O’Donoghue M., S. Boutin, C. J. Krebs and E. J. Hofer. 1997. Numerical responses of coyotes and lynx to the snowshoe hare cycle. Oikos 80: 150–162.

    Article  Google Scholar 

  36. O’Donoghue M., S. Boutin, C. J. Krebs, G. Zuleta, D. L. Murray and E. J. Hofer. 1998. Functional responses of coyotes and lynx to the snowshoe hare cycle. Ecology 79: 1193–1208.

    Article  Google Scholar 

  37. Parker, G. R. 1995. Eastern Coyote: The Story of its Success. Nimbus Publishing, Halifax, Nova Scotia.

    Google Scholar 

  38. Peacock, E. and D. L. Garshelis. 2006. Comment on “On the Regulation of Populations of Mammals, Birds, Fish, and Insects” IV. Science 313: 45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Peers, M. J. L., D. H. Thornton and D. L. Murray. 2013 Evidence for large-scale effects of competition: niche displacement in Canada lynx and bobcat. Proc. R. Soc. B, 280: 20132495.

    Article  Google Scholar 

  40. Poole, K. G. 2003. A review of the Canada lynx, Lynx canadensis, in Canada. Can. Field Nat. 117: 360–376.

    Article  Google Scholar 

  41. Ranta E., J. Lindström, H. Linden and P. Helle. 2008. How reliable are harvesting data for analyses of spatio-temporal population dynamics? Oikos, 117: 1461–1468.

    Article  Google Scholar 

  42. R Development Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  43. Ripple, W. J., A. J. Wirsing, R. L.Beschta and S. W. Buskirk. 2011. Can restoring wolves aid in lynx recovery. Wildlife Soc. B. 35: 514–518.

    Article  Google Scholar 

  44. Ritchie E. G. and C. N. Johnson. 2009. Predator interactions, mesopredator release and biodiversity conservation. Ecol. Lett. 12: 982–998.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Roth, J. D., J. D. Marshall, D. L. Murray, D. M. Nickerson and T. D. Steury. 2007. Geographical gradients in diet affect population dynamics of Canada lynx. Ecology 88: 2736–2743.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Row, J. R., P. J. Wilson and D. L. Murray. 2014. Anatomy of a population cycle: the role of density dependence and demographic variability on numerical instability and periodicity. J. Anim Ecol. 83: 800–812.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Scheipl, F., S. Greven and H. Kuchenhoff. 2008. Size and power of tests for a zero random effect variance or polynomial regression in additive and linear mixed models. Comput Stat. Data Anal. 52: 3283–3299.

    Article  Google Scholar 

  48. Smith, C. H. 1983. Spatial trends in Canadian snowshoe hare, Lepus americanus, population cycles. Can. Field Nat. 97: 151–160.

    Google Scholar 

  49. Todd, A. W., L. B. Keith and C. A. Fischer. 1981. Population ecology of coyotes during a fluctuation of snowshoe hares. J. Wildlife Manage. 45: 629–640.

    Article  Google Scholar 

  50. US Fish and Wildlife 2000. 50 CFR Part 17 - Endangered and Threatened Wildlife and Plants; Determination of Threatened Status for the Contiguous U.S. Distinct Population Segment of the Canada Lynx and Related Rule; Final Rule. Available at http://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5193136.pdf

  51. Vashon, J. H., A. L. Meehan, W. J. Jakubas, J. F. Organ, A. D. Vashon, C. R. McLaughlin, G. J. Matula, Jr. and S. M. Crowley. 2008. Spatial ecology of a Canada lynx population in northern Maine. J. Wildlife Manage. 72: 1479–1487.

    Article  Google Scholar 

  52. Weinstein, M. S. 1977. The hares, lynx, and trappers. Am. Nat. 111: 806–808.

    Article  Google Scholar 

  53. Zhang, X., Brown, R., Vincent, L., Skinner, W., Feng, Y. and E. Mekis. 2011. Canadian Climate Trends, 1950–2007. Canadian Biodiversity: Ecosystem Status and Trends 2010, Technical Thematic Report No. 5. Canadian Councils of Resource Ministers. Ottawa, ON.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Guillaumet.

Electronic supplementary material

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guillaumet, A., Bowman, J., Thornton, D. et al. The influence of coyote on Canada lynx populations assessed at two different spatial scales. COMMUNITY ECOLOGY 16, 135–146 (2015). https://doi.org/10.1556/168.2015.16.2.1

Download citation

Keywords

  • Canada lynx
  • Coyote
  • Distribution models
  • Fur harvest
  • Interspecific competition
  • Population trends
  • Spectral analysis
  • Time-series