Advertisement

Community Ecology

, Volume 16, Issue 1, pp 76–85 | Cite as

Species sorting drives variation of boreal lake and river macrophyte communities

  • J. AlahuhtaEmail author
  • J. Rääpysjärvi
  • S. Hellsten
  • M. Kuoppala
  • J. Aroviita
Article

Abstract

Metacommunity paradigms are increasingly studied to explain how environmental control and spatial patterns determine variation in community composition. However, the relative importance of these patterns on biological assemblages among different habitats is not well known. We investigated the relative roles of local, catchment and spatial variables based on overland and watercourse distances in explaining the variation of community structure of lake and river macrophytes in two large river basins at two spatial extents (within and across river basins). Partial redundancy analysis was used to explore the share of variability in macrophyte communities attributable to local environmental conditions, catchment land cover and space (generated with Principle Coordinates of Neighbour Matrices). We found that local variables had the highest effect on both lake and river macrophyte communities, followed by catchment variables. Space had no or only marginal influence on the community structure regardless of used distance measure. Total phosphorus, conductivity and turbidity of the local variables contributed most for lake macrophytes, whereas pH and color had largest independent contribution for variation in river macrophytes. Size of catchment area and proportion of lakes and agriculture were the most important catchment variables in both habitats. The strong importance of environmental control suggests that both lake and river macrophyte communities are structured by species sorting. This finding gives support to the validity of assessment systems based on the European Water Framework Directive.

Keywords

Aquatic plants Dispersal Finland Euclidean distances Metacommunity dynamics Overland distances Principle Coordinates of Neighbour Matrices Spatial processes Space Stream networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alahuhta, J., K.-M. Vuori and M. Luoto. 2011. Land use, geomor-phology and climate as environmental determinants of emergent aquatic macrophytes in boreal catchments. Boreal Environ.Res. 16: 185–202.Google Scholar
  2. Alahuhta, J. and J. Heino. 2013. Spatial extent, regional specific-ity and metacommunity structuring in lake macrophytes. J. Biogeogr. 40: 1572–1582.CrossRefGoogle Scholar
  3. Alahuhta, J., A. Kanninen, S. Hellsten, K.-M. Vuori, M. Kuoppala and H. Hämäläinen. 2013. Environmental and spatial correlates of community composition, richness and status of boreal lake macrophytes. Ecol. Indic. 32: 172–181.CrossRefGoogle Scholar
  4. Alahuhta, J. 2015. Geographic patterns of lake macrophyte communities and species richness at regional scale. J. Veg. Sci., in press. DOI: 10.1111/jvs.12261.Google Scholar
  5. Alahuhta, J., A. Kanninen, S. Hellsten, K.-M. Vuori, M. Kuoppala and H. Hämäläinen. 2014a. Variable response of functional mac-rophyte groups to lake characteristics, land use and space: implications for bioassessment. Hydrobiologia 737: 201–214.CrossRefGoogle Scholar
  6. Alahuhta, J., L.B. Johnson, J. Olker and J. Heino. 2014b. Species sorting determines variation in the community composition of common and rare macrophytes at various spatial extents. Ecol. Complex. 20: 61–68.CrossRefGoogle Scholar
  7. Anonymous 2003. SFS-EN 14184 2003. Water quality. Guideline for studying macrophytes in running waters. Finnish Standards Association SFS, Helsinki.Google Scholar
  8. Beisner, B.E., P.R. Peres-Neto, E.S. Lindström, A. Barnett and M.L. Longhi. 2006. The role of environmental and spatial processes in structuring lake communities from bacteria to fsh. Ecology 87: 2985–2991.CrossRefGoogle Scholar
  9. Bennett, J.R., B.F. Cumming, B.K. Ginn and J.P. Smol. 2010. Broad-scale environmental responses and niche conservatism in lacustrine diatom communities. Global Ecol. Biogeogr. 19: 724–732.Google Scholar
  10. Birk, S. and N. Willby. 2010. Towards harmonization of ecological quality classification: establishing common grounds in European macrophyte assessment for rivers. Hydrobiologia 652: 149–163.CrossRefGoogle Scholar
  11. Blanchet, F.G., P. Legendre and D. Borcard. 2008. Forward selection of explanatory variables. Ecography 89: 2623–2632.Google Scholar
  12. Boedeltje, G., J. Bakker, A. Ten Brinke, J van Groenendael and M. Soesbergen. 2004. Dispersal phenology of hydrochorous plants in relation to discharge, seed release time and buoyancy of seeds: the food pulse concept supported. J. Ecol. 92: 786–796.CrossRefGoogle Scholar
  13. Borcard, D., P. Legendre and P. Drapeau. 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045– 1055.CrossRefGoogle Scholar
  14. Borcard, D., F. Gillet and P. Legendre. 2011. Numerical Ecology with R. Springer, New York.CrossRefGoogle Scholar
  15. Bornette, G. and C. Amoros. 1991. Aquatic vegetation and hydrology of a braided river floodplain. J. Veg. Sci. 2: 497–512.CrossRefGoogle Scholar
  16. Capers, R.S., R. Selsky and G.J. Bugbee. 2010. The relative importance of local conditions and regional processes in structuring aquatic plant communities. Freshw. Biol. 55: 952–966.CrossRefGoogle Scholar
  17. Chambers, P.A., P. Lacoul, K.J. Murphy and S.M. Thomaz. 2008. Global diversity of aquatic macrophytes in freshwater. Hydrobiology 595: 9–26.CrossRefGoogle Scholar
  18. Cottenie, K. 2005. Integrating environmental and spatial processes in ecological community dynamics. Ecol. Lett. 8: 1175–1182.CrossRefGoogle Scholar
  19. Crump, B.C., H.E. Adams, J.E. Hobbie and G.W. Kling. 2007. Biogeography of bacterioplankton in lakes and streams of an arctic tundra catchment. Ecology 88: 1365–1378.CrossRefPubMedPubMedCentralGoogle Scholar
  20. De Bie, T., L. De Meester, L. Brendonck et al. 2012. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecol. Lett. 15: 740–747.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dray, S., P. Legendre and P.R. Peres-Neto. 2006. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model. 196: 483–493.CrossRefGoogle Scholar
  22. Dray, S., R. Pélissier, P. Couteron, M.J. Fortin, P. Legendre, P.R. Peres-Neto, E. Bellier, R. Bivand, F.G. Blanchet, M. De Caceres, A.B. Dufour, E. Heegaard, T. Jombart, F. Munoz, J. Oksanen, J. Thioulouse and H.H. Wagner. 2012. Community ecology in the age of multivariate multiscale spatial analysis. Ecol. Monogr. 82: 257–275.CrossRefGoogle Scholar
  23. Eronen, M. 2005. Land Uplift: Virgin Land from the Sea. In: Seppälä, M. (ed.), The Physical Geography of Fennoscandia. Oxford University Press, Oxford, pp. 17–34.Google Scholar
  24. Grönroos, M., J. Heino, T. Siqueira, V.L. Landeiro, J. Kotanen and L.M. Bini 2013. Metacommunity structuring in stream networks: roles of dispersal mode, distance type, and regional environmental context. Ecol. Evol. 3: 4473–4487.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Heino, J. 2011. A macroecological perspective of diversity patterns in the freshwater realm. Freshw. Biol. 56: 1703–1722.CrossRefGoogle Scholar
  26. Heino, J., M. Grönroos, J. Soininen, R. Virtanen and T. Muotka. 2012. Context dependency and metacommunity structuring in boreal headwater streams. Oikos 121: 537–544.CrossRefGoogle Scholar
  27. Jacobson, N. and P.R. Peres-Neto. 2010. Quantifying and disentangling dispersal in metacommunities: how close have we come? How far is there to go? Landscape Ecol. 25: 495–507.CrossRefGoogle Scholar
  28. Johnson, R.K., W. Goedkoop and L. Sandin. 2004. Spatial scale and ecological relationships between the macroinvertebrate communities of stony habitats of streams and lakes. Freshw. Biol. 49: 1179–94.CrossRefGoogle Scholar
  29. Kanninen, A., V.-M. Vallinkoski, J. Leka, T. J. Marjomäki, S. Hellsten and H. Hämäläinen. 2013. A comparison of two methods for surveying aquatic macrophyte communities in boreal lakes: implications for bioassessment. Aquatic Bot. 104: 88–100.CrossRefGoogle Scholar
  30. Lacoul, P. and B. Freedman. 2006. Environmental infuences on aquatic plants in freshwater ecosystems. Environ. Rev. 14: 89– 136.Google Scholar
  31. Landeiro, V.L., W.E. Magnusson, A.S. Melo, H.M.V. Espirito- Santo and L.M. Bini. 2011. Spatial eigenfunction analyses in stream networks: do watercourse and overland distances produce different results? Freshw. Biol. 56: 1184–1192.CrossRefGoogle Scholar
  32. Legendre, P. and E.D. Gallagher. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Legendre, P., D. Borcard and P.R. Peres-Neto. 2005. Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecol. Monogr. 75: 435–450.CrossRefGoogle Scholar
  34. Leibold, M.A., M. Holyoak, N. Mouquet, P. Amarasekare, J.M. Chase, M.F. Hoopes, R.D. Holt, J.B. Shurin, R. Law, D. Tilman, M. Loreau and A. Gonzalez. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett.7: 601–613.CrossRefGoogle Scholar
  35. Logue, J., N. Mouquet, H. Peter, H. Hillebrand and The Metacommunity Working Group. 2011. Empirical approaches to metacommunities: a review and comparison with theory. Trends Ecol. Evol. 26: 482–491.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Madsen, J.D., P.A. Chambers, J.F. James, E.W. Koch and D.F. Westlake. 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444: 71–84.CrossRefGoogle Scholar
  37. Mikulyuk, A., Sharma, S., Van Egeren, S., Erdmann, E., Nault, M.E. and Hauxwell, J. 2011. The relative role of environmental, spatial, and land-use patterns in explaining aquatic macrophyte community composition. Can. J. Fish. Aquatic Sci. 68: 1778– 1789.CrossRefGoogle Scholar
  38. O’Hare, M.T., I.D.M. Gunn, D.S. Chapman, B.J. Dudley and B.V. Purse. 2012. Impacts of space, local environment and habitat connectivity on macrophyte communities in conservation lakes. Divers. Distrib. 18: 603–614.CrossRefGoogle Scholar
  39. Oksanen, J., F.G. Blanchet, R. Kindt, P. Legendre, P.R. Minchin, R.B. O’Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens and H. Wagner. 2012. vVegan: Community Ecology Package. Rpackage version 2.0-3. Available at: https://doi.org/CRAN.R-project.org/package=vegan.
  40. Padial, A.A., F. Ceschin, S.A.J. Declerck, L. De Meester, C.C. Bonecker, F.A. Lansac-Toha, L. Rodrigues, L.C. Rodrigues, S. Train, L.F.M. Velho and L.M. Bini. 2014. Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PLoS ONE 9: e111227.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Peres-Neto, P.R., P. Legendre, S. Dray and D. Borcard. 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Presley, S.J., C.L. Higgins and M.R. Willig. 2010. A comprehensive framework for the evaluation of metacommunity structure. Oikos 119: 908–917.CrossRefGoogle Scholar
  43. Riis, T. 2008. Dispersal and colonisation of plants in lowland streams: success rates and bottlenecks. Hydrobiologia 596: 341–351.CrossRefGoogle Scholar
  44. Rintanen, T. 1996. Changes in the fora and vegetation of 113 Finnish lakes during 40 years. Ann. Bot. Fenn. 33: 101–122.Google Scholar
  45. Robinson, C. T. and B. Kawecka. 2005. Benthic diatoms of an Alpine stream/lake network in Switzerland. Aquatic Sci. 67: 492–506.CrossRefGoogle Scholar
  46. Santamaria, L. 2002. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecol. 23: 137–154.CrossRefGoogle Scholar
  47. Soininen, J. and J. Weckström. 2009. Diatom community structure along environmental and spatial gradients in lakes and streams. Fundamental Appl. Limnol. 173: 205–213.CrossRefGoogle Scholar
  48. Soons, M.B., C. van der Vlugt, B. van Lith, G.W. Heil and M. Klaassen. 2008. Small seed size increases the potential for dispersal of wetland plants by ducks. J. Ecol. 96: 619–627.CrossRefGoogle Scholar
  49. Toivonen H. and P. Huttunen. 1995. Aquatic macrophytes and ecological gradients in 57 small lakes in southern Finland. Aquatic Bot. 51: 197–221.CrossRefGoogle Scholar
  50. Van Geest, G.J., F.C.J.M. Roozen, H. Coops, R.M.M. Roijackers, A.D. Buijse, E.T.H.M. Peeters and M. Scheffer. 2003. Vegetation abundance in lowland food plan lakes determined by surface area, age and connectivity. Freshw. Biol. 48: 440–454.CrossRefGoogle Scholar
  51. Viana, D.S., L. Santamaria, T.C. Michot and J. Figuerola. 2013. Migratory strategies of waterbirds shape the continental-scale dispersal of aquatic organisms. Ecography 36: 430–438.CrossRefGoogle Scholar
  52. Wetzel, R.G. 2001. Limnology, Lake and River Ecosystems. 3rd ed. Academic Press, New York.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2015

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • J. Alahuhta
    • 1
    Email author
  • J. Rääpysjärvi
    • 2
  • S. Hellsten
    • 2
  • M. Kuoppala
    • 2
  • J. Aroviita
    • 2
  1. 1.Department of GeographyUniversity of OuluFinland
  2. 2.Finnish Environment InstituteFreshwater Centre, University of OuluFinland

Personalised recommendations