Advertisement

Community Ecology

, Volume 16, Issue 1, pp 39–47 | Cite as

Scale dependence of the beta diversity-scale relationship

  • Y. Zhang
  • K. MaEmail author
  • M. Anand
  • W. Ye
  • B. Fu
Article
  • 1 Downloads

Abstract

Alpha, beta, and gamma diversity are three fundamental biodiversity components in ecology, but most studies focus only on the scale issues of the alpha or gamma diversity component. The beta diversity component, which incorporates both alpha and gamma diversity components, is ideal for studying scale issues of diversity. We explore the scale dependency of beta diversity and scale relationship, both theoretically as well as by application to actual data sets. Our results showed that a power law exists for beta diversity-area (spatial grain or spatial extent) relationships, and that the parameters of the power law are dependent on the grain and extent for which the data are defined. Coarse grain size generates a steeper slope (scaling exponent z) with lower values of intercept (c), while a larger extent results in a reverse trend in both parameters. We also found that, for a given grain (with varying extent) or a given extent (with varying grain) the two parameters are themselves related by power laws. These findings are important because they are the first to simultaneously relate the various components of scale and diversity in a unified manner.

Keywords

Alpha diversity Diversity partitioning Gamma diversity Power law Scaling 

Abbreviations

DBH

Diameter at Breast Height

SAR

Species-area relationship

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42974_2015_16010039_MOESM1_ESM.pdf (727 kb)
Supplementary material, approximately 744 KB.

References

  1. Anderson, M.J., T.O. Crist, J.M. Chase, M. Vellend, B.D. Inouye, A.L. Freestone, N.J. Sanders, H.V. Cornell, L.S Comita, K.F. Davies, S.P. Harrison, N.J.B. Kraft, J.C. Stegen and N.G. Swenson. 2011. Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14: 19–28.Google Scholar
  2. Arrhenius, O. 1921. Species and area. J. Ecol. 9: 95–99.CrossRefGoogle Scholar
  3. Barton, P.S., S.A. Cunningham, A.D. Manning, H. Gibb, D.B. Lindenmayer and R.K. Didham. 2013. The spatial scaling of beta diversity. Global Ecol. Biogeogr. 22: 639–647.CrossRefGoogle Scholar
  4. Chao A., C. Chiu and C.H. Hsieh. 2012. Proposing a resolution to debates on diversity partitioning. Ecology 93: 2037–2051.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Connor, E.F. and E.D. McCoy.1979. The statistics and biology of the species-area relationship. Am. Nat. 113: 791–833.CrossRefGoogle Scholar
  6. Crawley, M.J. and J.E. Harral. 2001. Scale dependence in plant biodiversity. Science 291: 864–868.CrossRefGoogle Scholar
  7. de Bello, F., S. Lavergne, C. N. Meynard, J. Lepš and W. Thuiller. 2010. The partitioning of diversity: showing Theseus a way out of the labyrinth. J. Veg. Sci. 21: 992–1000.CrossRefGoogle Scholar
  8. Dengler, J. 2009. Which function describes the species-area relationship best? A review and empirical evaluation. J. Biogeogr. 36: 728–744.CrossRefGoogle Scholar
  9. Drakare S., J.J. Lennon and H. Hillebrand. 2006. The imprint of the geographical, evolutionary and ecological context on species– area relationships. Ecol. Lett. 9: 215–227.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ellison, A.M. 2010. Partitioning diversity. Ecology 91: 1962–1963.CrossRefPubMedPubMedCentralGoogle Scholar
  11. He, F.L. and P. Legendre. 1996. On species-area relations. Am. Nat. 148: 719–737.CrossRefGoogle Scholar
  12. Hubbell, S.P. 2001. The Unifed Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, NJ.Google Scholar
  13. Jost, L. 2010. Independence of alpha and beta diversities. Ecology 91: 1969–1974.CrossRefGoogle Scholar
  14. Kiflawi M. and M. Spencer. 2004. Confidence intervals and hypothesis testing for beta diversity. Ecology 85: 2895–2900.CrossRefGoogle Scholar
  15. Koleff, P., K.J. Gaston and J.J. Lennon. 2003. Measuring beta diversity for presence–absence data. J. Anim. Ecol. 72: 367–382.CrossRefGoogle Scholar
  16. Lawton, J.H. 1999. Are there general laws in ecology? Oikos 84: 177– 192.CrossRefGoogle Scholar
  17. Legendre, P., D. Borcard and P.R. Peres-Neto. 2005. Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecol. Monogr. 75: 435–450.CrossRefGoogle Scholar
  18. Levin, S.A. 1992. The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture. Ecology 73: 1943–1967.CrossRefGoogle Scholar
  19. Li, L., Z.L. Huang, W.H. Ye, H.L. Cao, S.G. Wei, Z.G. Wang, J.Y. Lian, I.F. Sun, K.P. Ma and F.L. He. 2009. Spatial distributions of tree species in a subtropical forest of China. Oikos 118: 495– 502.CrossRefGoogle Scholar
  20. Lomolino, M.V. 2000. Ecology’s most general, yet protean pattern: the species-area relationship. J. Biogeogr. 27: 17–26.CrossRefGoogle Scholar
  21. Loreau, M. 2000. Are communites saturated? On the relationship between α, β and γ diversity. Ecol. Lett. 3: 73–76.CrossRefGoogle Scholar
  22. MacArthur, R., H. Recher and M.Cody. 1966. On the relation between habitat selection and species diversity. Am. Nat. 100: 319– 332.CrossRefGoogle Scholar
  23. MacArthur, R.H. and E.O Wilson. 1967. The Theory of Island Biogeography. Princeton University Press, Princeton, NJ.Google Scholar
  24. MacNally, R., E. Fleishman, L.P Bulluck and C.J. Estrus. 2004. Comparative influence of spatial scale on beta diversity within regional assemblages of birds and butterflies. J. Biogeogr. 31: 917–929.CrossRefGoogle Scholar
  25. Martín, H. G. and N. Goldenfeld. 2006. On the origin and robustness of power-laws pecies-area relationships in ecology. PNAS 103: 10310–10315.CrossRefGoogle Scholar
  26. Palmer, M.W. and PS. White. 1994. Scale dependence and the Species-Area Relationship. Am. Nat. 144: 717–740.CrossRefGoogle Scholar
  27. R Development Core Team. 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna,Austria. ISBN 3-900051-07-0, URL https://doi.org/www.R-project.org/.
  28. Rahbek, C. 2005. The role of spatial scale and the perception of large-scale species-richness patterns. Ecol. Lett. 8: 224–239.CrossRefGoogle Scholar
  29. Ricotta, C. & M. Marignani. 2007. Computing β-diversity with Rao’s quadratic entropy: a change of perspective. Divers. Distrib. 13: 237–241.CrossRefGoogle Scholar
  30. Ricotta, C. 2008. Computing additive beta-diversity from presence and absence scores: a critique and alternative parameters. Theor. Popul. Biol. 73: 244–249.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ricotta, C. 2010. On beta diversity decomposition: trouble shared is not trouble halved. Ecology 91: 1981–1983.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ritz, C. and J.C. Streibig. 2008. Nonlinear Regression with R. Springer, New York.Google Scholar
  33. Rosenzweig, M.C. 1995. Species Diversity in Space and Time. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  34. Sandel, B. and A.B. Smith. 2009. Scale as a lurking factor: incorporating scale-dependence in experimental ecology. Oikos 118: 1284–1291.CrossRefGoogle Scholar
  35. Scheiner, S. M. 2003. Six types of species-area curves. Global Ecol. Biogeogr. 12: 441–447.CrossRefGoogle Scholar
  36. Tuomisto, H. 2010a. A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33: 2–22.CrossRefGoogle Scholar
  37. Tuomisto, H. 2010b. A diversity of beta diversities: straightening up a concept gone awry. Part 2. Quantifying beta diversity and related phenomena. Ecography 33: 23–45.CrossRefGoogle Scholar
  38. Turner, W.R. and Tjørve E. 2005.Scale-dependence in species-area relationships. Ecography 28: 721–730.CrossRefGoogle Scholar
  39. Veech, J.A. and T.O. Crist. 2010. Toward a unified view of diversity partitioning. Ecology 91: 1988–1992.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Vellend, M. 2001. Do commonly used indices of β-diversity measure species turnover? J. Veg. Sci. 12: 545–552.CrossRefGoogle Scholar
  41. Xiao, X., E.P. White, M.B. Hooten and S.L. Durham. 2011. On the use of logtransformation vs. nonlinear regression for analyzing biological power laws. Ecology 92: 1887–1894.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Whittaker, R.H. 1972. Evolution and measurement of species diversity. Taxon 21: 213–251.CrossRefGoogle Scholar
  43. Whittaker, R. J. and T. J. Matthews. 2014. The varied form of species–area relationships. J. Biogeogr. 41: 209–210.CrossRefGoogle Scholar
  44. Wiens, J.A. 1989. Spatial scaling in ecology. Funct. Ecol. 3: 385–397.CrossRefGoogle Scholar
  45. Wilson, M. V. and A. Shmida. 1984. Measuring beta diversity with presence-absence data. J. Ecol. 72: 1055–1064.CrossRefGoogle Scholar
  46. Zhang, Y.X., K.M. Ma, M. Anand and B.J. Fu. 2006. Do generalized scaling laws exist for species abundance distribution in mountains? Oikos 116: 81–88.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2015

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina
  2. 2.Global Ecological Change Laboratory, School of Environmental SciencesUniversity of GuelphGuelphCanada
  3. 3.Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical GardenChinese Academy of SciencesGuangzhouChina

Personalised recommendations