Advertisement

Cereal Research Communications

, Volume 47, Issue 2, pp 205–215 | Cite as

Genetic Variability of Kernel Provitamin-A in Sub-tropically Adapted Maize Hybrids Possessing Rare Allele of β-carotene hydroxylase

  • R. Goswami
  • R. U. Zunjare
  • S. Khan
  • V. Muthusamy
  • A. Baveja
  • A. K. Das
  • S. K. Jaiswal
  • J. S. Bhat
  • S. K. Guleria
  • F. HossainEmail author
Article

Abstract

Vitamin-A deficiency is a major health concern. Traditional yellow maize possesses low provitamin-A (proA). Mutant crtRB1 gene significantly enhances proA. 24 experimental hybrids possessing crtRB1 allele were evaluated for β-carotene (BC), β-cryptoxanthin (BCX), lutein (LUT), zeaxanthin (ZEA), total carotenoids (TC) and grain yield at multi-locations. BC (0.64–17.24 µg/g), BCX (0.45–6.84 µg/g), proA (0.86–20.46 µg/g), LUT (9.60–31.03 µg/g), ZEA (1.24–12.73 µg/g) and TC (20.60–64.02 µg/g) showed wide variation. No significant genotype × location interaction was observed for carotenoids. The mean BC (8.61 µg/g), BCX (4.04 µg/g) and proA (10.63 µg/g) in crtRB1-based hybrids was significantly higher than normal hybrids lacking crtRB1-favourable allele (BC: 1.73 µg/g, BCX: 1.29 µg/g and proA: 2.37 µg/g). Selected crtRB1-based hybrids possessed 33% BC and 40% BCX compared to 6% BC and 5% BCX in normal hybrids. BC showed positive correlation with BCX (r = 0.90), proA (r = 0.99) and TC (r = 0.64) among crtRB1-based hybrids. Carotenoids didn’t show association with grain yield. Average yield potential of proA rich hybrids (6794 kg/ha) was at par with normal hybrids (6961 kg/ha). PROAH-13, PROAH-21, PROAH-17, PROAH-11, PROAH-23, PROAH-24 and PROAH-3 were the most promising with >12 µg/g proA and >6000 kg/ha grain yield. The newly identified crtRB1-based hybrids assume significance in alleviating malnutrition.

Keywords

maize variability provitamin-A biofortification crtRB1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2019_4702205_MOESM1_ESM.pdf (156 kb)
Supplementary material, approximately 160 KB.

References

  1. Bouis, H.E., Saltzman, A. 2017. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Global Food Secur. 12:49–58.CrossRefGoogle Scholar
  2. Chander, S., Guo, Y.Q., Yang, X.H., Zhang, J., Lu, X.Q., Yan, J.B. 2008. Using molecular markers to identify two major loci controlling carotenoid contents in maize grain. Theor. Appl. Genet. 116:223–233.CrossRefGoogle Scholar
  3. Choudhary, M., Hossain, F., Muthusamy, V., Thirunavukkarasu, N., Saha, S., Pandey, N., Jha, S.K., Gupta, H.S. 2015. Microsatellite marker-based genetic diversity analyses of novel maize inbreds possessing rare allele of β-carotene hydroxylase (crtRB1) for their utilization in β-carotene enrichment. J. Plant Biochem. Biotech. 25:12–20.CrossRefGoogle Scholar
  4. Choudhary, M., Muthusamy, V., Hossain, F., Thirunavukkarasu, N., Pandey, N., Jha, S.K., Gupta, H.S. 2014. Characterization of β-carotene rich MAS-derived maize inbreds possessing rare genetic variation in β-carotene hydroxylase gene. Indian J. Genet. 74:620–623.Google Scholar
  5. Egesel, C.O., Wong, J.C., Lambert, R.J., Rocheford, T.R. 2003. Gene dosage effects on carotenoid concentration in maize grain. Maydica 48:183–190.Google Scholar
  6. Fraser, P.D., Bramley, P.M. 2004. The biosynthesis and nutritional uses of carotenoids. Prog. Lip. Res. 43:228–265.CrossRefGoogle Scholar
  7. Global Nutrition Report. 2017. Retrived from website https://doi.org/www.globalnutrition report.org.
  8. Gupta, H.S., Hossain, F., Muthusamy, V. 2015. Biofortification of maize: An Indian perspective. Indian J. Genet. 75:1–22.Google Scholar
  9. Howitt, C.A., Pogson, B.J. 2006. Carotenoid accumulation and function in seeds and non-green tissues. PlantCell Environ. 29:435–445.Google Scholar
  10. Kurilich, A.C., Juvik, J.A. 1999. Quantification of carotenoid and tocopherol antioxidants in Zea mays. J. Agric. Food Chem. 47:1948–1955.CrossRefGoogle Scholar
  11. Menkir, A., Brown, R.L., Bandyopadhyay, R., Cleveland, T.E. 2008. Registration of six tropical maize germplasm lines with resistance to aflatoxin contamination. J. Plant Registrations 2:246–250.CrossRefGoogle Scholar
  12. Muthusamy, V., Hossain, F., Nepolean, T., Saha, S., Agrawal, P.K., Guleria, S.K., Gupta, H.S. 2015a. Genetic variability and inter-relationship of kernel carotenoids among indigenous and exotic maize (Zea mays L.) inbreds. Cereal Res. Comm. 43:567–578.CrossRefGoogle Scholar
  13. Muthusamy, V., Hossain, F., Thirunavukkarasu, N., Pandey, N., Vishwakarma, A.K., Saha, S., Gupta, H.S. 2015c. Molecular characterization of exotic and indigenous maize inbreds for biofortification with kernel carotenoids. Food Biotechnol. 29:276–295.CrossRefGoogle Scholar
  14. Muthusamy, V., Hossain, F., Thirunavukkarasu, N., Choudhary, M., Saha, S., Bhat, J.S., 2014. Development of β-carotene rich maize hybrids through marker-assisted introgression of β-carotene hydroxylase allele. PLoS One 9:1–22.CrossRefGoogle Scholar
  15. Muthusamy, V., Hossain, F., Thirunavukkarasu, N., Saha, S., Agrawal, P.K., Gupta, H.S. 2016. Genetic analyses of kernel carotenoids in novel maize genotypes possessing rare allele of β-carotene hydroxylase gene. Cereal Res. Commun. 44:669–680.CrossRefGoogle Scholar
  16. Muthusamy, V., Hossain, F., Thirunavukkarasu, N., Saha, S., Gupta, H.S. 2015b. Allelic variations for lycopene-ε-cyclase and β-carotene hydroxylase genes in maize inbreds and their utilization in β-carotene enrichment programme. Cogent Food Agric. 1.Google Scholar
  17. Neeraja, C.N., Babu, V.R., Ram, S., Hossain, F., Hariprasanna, K., Rajpurohit, B.S. 2017. Biofortification in cereals:progress and prospects. Curr. Sci. 113:1050–1057.CrossRefGoogle Scholar
  18. Sarika, K., Hossain, F., Muthusamy, V., Zunjare, R.U., Baveja, A., Goswami, R., Bhat, J.S., Saha, S., Gupta, H.S. 2018. Marker-assisted pyramiding of opaque2 and novel opaque16 genes for further enrichment of lysine and tryptophan in sub-tropical maize. Plant Sci. 272:142–152.CrossRefGoogle Scholar
  19. Vignesh, M., Nepolean, T., Hossain, F., Singh, A.K., Gupta, H.S. 2013. Sequence variation in 3′UTR region of crtRB1 gene and its effect on β-carotene accumulation in maize kernel. J. Plant Biochem. Biotech. 22:401–408.CrossRefGoogle Scholar
  20. Vignesh, M., Hossain, F., Nepolean, T., Supradip, S., Agrawal, P.K., Guleria, S.K. 2012. Genetic variability for kernel β-carotene and utilization of crtRB1 3’TE gene for biofortification in maize (Zea mays L.). Indian J. Genet. 72:189–194.Google Scholar
  21. Wong, J.C., Lambert, R.J., Wurtzel, E.T., Rocheford, T.R. 2004. QTL and candidate genes phytoene synthase and ζ-carotene desaturase associated with the accumulation of carotenoids in maize. Theor. Appl. Genet. 108:349–359.CrossRefGoogle Scholar
  22. Yadava, D.K., Choudhury, P.R., Hossain, F., Kumar, D. 2017. Biofortified varieties:sustainable way to alleviate malnutrition. ICAR, New Delhi. pp. 1–32.Google Scholar
  23. Yan, J., Kandianis, C.B., Harjes, C.E., Bai, L., Kim, E.H., Yang, X. 2010. Rare genetic variation at Zea mays crtRB1 increases β-carotene in maize grain. Nat. Genet. 42:322–327.CrossRefGoogle Scholar
  24. Zunjare, R.U., Chhabra, R., Hossain, F., Baveja, A., Muthusamy, V., Gupta, H.S. 2018b. Molecular characterization of 5′ UTR of the lycopene epsilon cyclase (lcyE) gene among exotic and indigenous inbreds for its utilization in maize biofortification. 3Biotech 8:75.Google Scholar
  25. Zunjare, R.U., Chhabra, R., Hossain, F., Muthusamy, V., Baveja, A., Gupta, H.S. 2018c. Development and validation of multiplex-PCR assay for simultaneous detection of rare alleles of crtRB1 and lcyE governing higher accumulation of provitamin A in maize kernel. J. Plant Biochem.Biotechnol. 2:208–214.Google Scholar
  26. Zunjare, R.U., Hossain, F., Muthusamy, V., Baveja, A., Chauhan, H.S., Bhat, J.S., Thirunavukkarasu, N., Saha, S., Gupta, H.S. 2018a. Development of biofortified maize hybrids through marker-assisted stacking of β-carotene hydroxylase, lycopene-ε-cyclase and opaque2 genes. Front. Plant Sci. 9:178.CrossRefGoogle Scholar
  27. Zunjare, R.U., Hossain, F., Muthusamy, V., Baveja, A., Chauhan, H.S., Thirunavukkarasu, N., Saha, S., Gupta, H.S. 2017. Influence of rare alleles of β-carotene hydroxylase and lycopene epsilon cyclase genes on accumulation of provitamin A carotenoids in maize kernels. Plant Breed. 136:872–880.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2019

Authors and Affiliations

  • R. Goswami
    • 1
  • R. U. Zunjare
    • 1
  • S. Khan
    • 2
  • V. Muthusamy
    • 1
  • A. Baveja
    • 1
  • A. K. Das
    • 1
  • S. K. Jaiswal
    • 1
  • J. S. Bhat
    • 1
  • S. K. Guleria
    • 3
  • F. Hossain
    • 1
    Email author
  1. 1.ICAR-Indian Agricultural Research Institute (IARI)New DelhiIndia
  2. 2.Banasthali VidyapithRajasthanIndia
  3. 3.CSK-Himachal Pradesh Krishi VishvavidyalayaBajauraIndia

Personalised recommendations