Cereal Research Communications

, Volume 47, Issue 2, pp 264–276 | Cite as

Salt Tolerant Wheat Landraces and Gly II Transformed Lines Show Distinct Biochemical Mechanisms of Stress Tolerance

  • L. Kaur
  • B. AsthirEmail author
  • N. S. Bains


The present investigation was carried out to study the distinct salt tolerance mechanism in two sets of material, Gly II transgenics and Kharchia landraces. The Gly II transgenics were developed for glyoxalase II (osglyII) gene (GenBank accession no. AY054407) from Oryza sativa through Agrobacterium mediated method in the background of wheat cultivar PBW 621. Kharchia 65 is a salt tolerant landrace derivative developed from Kharchia local which is native to saline soils of Rajasthan. The six wheat genotypes, viz. Kharchia local, Kharchia 65, PBW 621, G-2-2, G-3-4 and G-1-13 were evaluated for growth parameters, antioxidant enzymes and contents of glutathione, ascorbic acid, malondialdehyde (MDA), H2O2, sugars, chlorophyll, carotenoid, electrolyte leakage (EL) and Na+, K+ under control and two salt treatments (150 mM and 250 mM NaCl). The activities of antioxidant enzymes, glutathione, sugar content increased in both GlyII and Kharchia genotypes as compared to PBW 621. The GlyII activity increased (77–84%) in GlyII genotypes alongwith content of reduced glutathione (GSH) to maintain redox homeostasis. Apparently, GlyII and Kharchia genotypes exhibited minimum oxidative stress due to low content of MDA, H2O2, diminished EL and thereby causing less growth reduction and maintaining high chlorophyll and carotenoid level as compared to PBW 621. In addition, Gly II transgenic material and Kharchia lines showed less Na+ accumulation, greater seedling biomass and sugar content due to its salt tolerance mechanism. We infer that GlyII activity enhances GSH which play significant role in detoxifying ROS to establish stress homeostasis. The route for generation of GSH is via ascorbate-glutathione pathway mediated by glutathione reductase. Hence, GlyII transgenics and Kharchia genotypes can diminish salt stress following above mechanism.


antioxidants GlyII transgenics glyoxalase pathway wheat salt treatments 



glyoxalase II


glutathione peroxidase


glutathione s transferase


superoxide dismutase


glutathione reductase


reactive oxygen species


reduced glutathione


electrolyte leakage






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2019_4702264_MOESM1_ESM.pdf (483 kb)
Supplementary material, approximately 494 KB.


  1. Antognelli, C., Romani, R., Baldracchini, F., De Santis, A., Andreani, G., Tasela, V. 2003. Different activity of glyoxalase system in specimens of Sparus auratus exposed to sublethal copper concentrations. Chem. Biol. Interact. 142:297–305.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Ashraf, M. 2004. Some important physiological selection criteria for salt tolerance in plants. Flora 199:361–376.CrossRefGoogle Scholar
  3. Becana, M., Aparicio-Tejo, P., Irigoyan, J.J., Sanchez-Diaz, M. 1986. Some enzymes of hydrogen peroxide metabolism in leaves and root nodules of Medicago sativa. Plant Physiol. 82:1169–1171.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Beutler, E., Durron, O., Kally, B.M. 1963. Improved method for determination of blood glutathione. J. Lab. Clin. Med. 61:882–888.PubMedPubMedCentralGoogle Scholar
  5. Das, K., Roychoudhury, A. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2:53.CrossRefGoogle Scholar
  6. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F. 1956. Colorometric method for determination of sugars and related substances. Anal. Chem. 28:350–356.CrossRefGoogle Scholar
  7. Flowers, T.J. 2004. Improving crop salt tolerance. J. Exp. Bot. 55:307–319.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Foyer, C.H., Lopez-Delgado, H., Dat, J.F., Scott, I.M. 1997. Hydrogen peroxide and glutathione-associated mechanism of acclimatory stress tolerance and signaling. Plant Physiol. 100:241–254.CrossRefGoogle Scholar
  9. Ghosh, A., Pareek, A., Sopory, S.K., Singla-Pareek, S.L. 2014. A glutathione responsive rice glyoxalase II, OsGLYII-2, function in salinity adaptation by maintaining better photosynthesis efficiency and anti-oxidant pool. Plant J. 80:93–105.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Gill, S.S., Tuteja, N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48:909–913.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Gorham, J., Hardy, C., Wyn Jones, R.G., Joppa, LR., Law, C.N. 1987 Chromosomal location of K/Na discrimination character in the D genome of wheat. Theor. Appl. Genet. 74:584–588.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Gupta, B.K., Sahoo, K.K., Ghosh, A., Tripathi, A.K., Khalid, A., Das, P., Singh, A.K., Pareek, A., Sopory, S.K., Singla-Pareek, S.L. 2018. Manipulation of glyoxalase pathway confers tolerance to multiple stresses in rice Plant Cell and Environ. 41:1186–1200.Google Scholar
  13. Gurmani, A.R., Khan, S.U., Mabood, F., Ahmed, Z., Butt, S.J., Din, J., Mujeeb-Kazi, A., Smith, D. 2014. Screening and selection of synthetic hexaploid wheat germplasm for salinity tolerance based on physiological and biochemical characters. Int. J. Agric. Biol. 16:681–690.Google Scholar
  14. Heath, R.L., Packer, L. 1968. Photoperoxidation in isolated chloroplasts – Kinetics and stoichiometery of fatty acid peroxidation. Arch. Biochem. Biophys. 125:189–198.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Herbette, S., Labrouhe, D.T., Drevet, J.R., Roeckel-Drevet, P. 2011. Transgenic tomatoes showing higher glutathione peroxidase antioxidant activity are more resistant to an abiotic but more susceptible to biotic stress. Plant Sci. 180:548–553.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Hoagland, D.R., Arnon, D. 1950. The water culture method for growing plants without soil. Circular 347, California Agricultural Experiment Station, University of California-Berkeley, Berkeley Ca, USA.Google Scholar
  17. Hoque, M.A., Uraji, M., Banu, M.N.A., Mori, I.C., Nakamura, Y., Murata, Y. 2012. The effect of methylgly-oxal on glutathione S-trans-ferase from Nicotiana tabacum. Biosci. Biotechnol. Biochem. 74:2124–2126.CrossRefGoogle Scholar
  18. Hoque, T.S., Hossain, M.A., Mostofa, M.G., Burritt, D.J., Fujita, M., Tran Lam-Son, P. 2016. Methylglyoxal: An emerging signaling molecule in plant abiotic stress responses and tolerance. Front. Plant Sci. 7:1341.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Hussain, M.I., Shah, S., Hussain, S., Iqbal, K. 2002. Growth, yield and quality response of three wheat (Triticum aestivum L.) varieties to different levels of N, P and K. Int. J. Agric. Biol. 4(3):362–364.Google Scholar
  20. Joshi, Y.C., Ali, Q., Bal, A.R., Rana, R.S. 1980. Sodium/potassium index of wheat seedlings in relation to sodicity tolerance, International symposium on salt affected soils, Feb 18–21. CSSRI. Karnal pp. 451–460.Google Scholar
  21. Kapoor, D. 2015. Redox homeostasis in plants under abiotic stress: role of electron carriers, energy metabolism mediators and proteinaceous thiols. Front. Environ. Sci. 3:13.CrossRefGoogle Scholar
  22. Kaur, R. 2014. Genetic transformation of bread wheat (Triticum aestivum L.) by ‘particle gun and Agrobacterium-mediated approaches. Ph.D. dissertatioin. Punjab Agricultural University, Ludhiana, India.Google Scholar
  23. Kaya, C., Ashraf, M., Dikilitas, M., Tuna, A.L. 2013. Alleviation of salt stress induced adverse effects on maize plants by exogenous application of indoleacetic acid (IAA) and inorganic nutrients – a field trial. Aust. J. Crop Sci. 7:249–254.Google Scholar
  24. Kumar, M., Hasan, M., Arora, A., Gaikwad, K., Kumar, S., Rai, R.D. 2015. Sodium chloride-induced spatial and temporal manifestation in membrane stability index and protein profiles of contrasting wheat (Triticum aestivum L.) genotypes under salt stress. Ind. J. Plant Physiol. 20:271–275.CrossRefGoogle Scholar
  25. Kumar, S., Beena, A.S., Awana, M., Singh, A. 2017. Physiological, biochemical, epigenetic and molecular analyses of wheat (Triticum aestivum) genotypes with contrasting salt tolerance. Front. Plant Sci. 8:1151.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Luwe, M.W.F., Takahama, U., Heber, U. 1993. Role of ascorbate in detoxifying ozone in the apoplast of spinach (Spinacia oleracea L.) leaves. Plant Physiol. 101:969–976.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Mannervik, B., Guthenberg, C. 1981. Glutathione transferase (human placenta). Methods Enzymol. 77:231–235.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Miller, G., Suzuki, N., Ciftci-Yilmaz, S., Mittler, R. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 33:453–467.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Moller, I.S., Gilliham, M., Jha, D., Mayo, G.M., Roy, S.J., Coates, J.C. 2009. Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. Plant Cell 21:2163–2178.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Munns, R., James, R.A., Islam, S., Colmer, T.D. 2011. Hordeum marinum–wheat amphiploids maintain higher leaf K:Na and suffer less leaf injury than wheat parents in saline conditions. Plant Soil 348:365–377.CrossRefGoogle Scholar
  31. Noctor, G., Mhamdi, A., Chaouch, S., Han, Y.I., Neukermans, J., Marquez-Garcia, B. 2012. Glutathione in plants: an integrated overview. Plant Cell Environ. 35:454–484.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Noreen, Z., Ashraf, M. 2009. Changes in antioxidant enzymes and some key metabolites in some genetically diverse cultivars of radish (Raphanus sativus L.). Environ. Exp. Bot. 67(2):395–402.CrossRefGoogle Scholar
  33. Oyiga, B.C., Sharma, R.C., Shen, R.C., Baum, M., Ogbonnaya, F.C., Leon, J., Ballvora, A. 2016. Identification and characterization of salt tolerance of wheat germplasm using multivariable screening approach. J. Agron. Crop Sci. 202(6):472–485.CrossRefGoogle Scholar
  34. Passaia, G., Spagnolo, F.L., Caverzan, A., Jardim-Messeder, D., Christoff, A.P., Gaeta, M.L., de Araujo Mariath, J.E., Margis, R., Margis-Pinheiro, M. 2013. The mitochondrial glutathione peroxidase GPX3 is essential for H2O2 homeostasis and root and shoot development in rice. Plant Sci. 208:93–101.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Rahaie, M., Xue, G.P., Schenk, P.M. 2013. The role of transcription factors in wheat under different abiotic stresses. In: Vahdati, K. and Leslie, C. (eds) Abiotic Stress. Plant Responses and Applications in Agriculture. In Tech, Rijeka, Croatia, pp. 367–385.Google Scholar
  36. Sairam, R.K., Rao, K.V., Srivastava, G.C. 2002. Differential response of wheat genotypes to long-term salinity stress in relation to oxidative stress, antioxidant activity and osmolytes concentration. Plant Sci. 163:1037–1046.CrossRefGoogle Scholar
  37. Shaedle, M., Bassham, J.A. 1977. Chloroplast glutathione reductase. Plant Physiol. 59:1011–1012.CrossRefGoogle Scholar
  38. Sharma, P., Dubey, R.S. 2005. Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul. 46:209–221.CrossRefGoogle Scholar
  39. Singh, V., Singh, A.P., Bhadoria, J., Giri, J., Singh, J., Vineeth, T.V., Sharma, P.C. 2018. Differential expression of salt-responsive genes to salinity stress in salt tolerant and salt-sensitive rice (Oryza sativa L.) at seedling stage. Protoplasma 255:1665–1681.Google Scholar
  40. Singh, J., Singh, V., Sharma, P.C. 2018. Elucidating the role of osmotic, ionic and major salt responsive transcript components towards salinity tolerance in contrasting chickpea (Cicer arietinum) genotypes. Physiol. Mol. Bio. Plants 24(3):441–453.CrossRefGoogle Scholar
  41. Singla-Pareek, S.L., Yadav, S.K., Pareek, A., Reddy, M.K., Sopory, S.K. 2008. Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Res. 17:171–180.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Valentine, W.N., Paglia, D.E. 1987. Studies on the quantitative and qualities characterization of glutathione peroxidase. J. Laboratory Clin. Med. 70:158–165.Google Scholar
  43. Valentovic, P., Luxova, M., Kolarovic, L., Gasparikova, O. 2006. Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars.Plant Soil Environ. 52(4):186–191.CrossRefGoogle Scholar
  44. Wani, S.H., Gosal, S.S. 2011. Introduction of OsglyII gene into Oryza sativa for increasing salinity tolerance. Biol. Plant. 55:536–540.CrossRefGoogle Scholar
  45. Wellburn, A.R. 1994. The spectral determination of chlorophylls a and b as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 144:307–313.CrossRefGoogle Scholar
  46. Xie, J., Dai, Y., Mu, H., De, Y., Chen, H., Wu, Z., Ren, W. 2016. Physiological and biochemical responses to NACl salinity stress in three Roegneria (Poaceae) species. Pakistan J. Bot. 48(6):2215–2222.Google Scholar
  47. Yeo, A.R., Flowers, T.J. 1983. Varietal differences in the toxicity of sodium ions in rice leaves. Physiol. Plant. 59:189–195.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2019

Authors and Affiliations

  1. 1.Department of BiochemistryPunjab Agricultural UniversityLudhiana, PunjabIndia
  2. 2.Department of Plant Breeding and GeneticsPunjab Agricultural UniversityLudhiana, PunjabIndia

Personalised recommendations