Advertisement

Cereal Research Communications

, Volume 46, Issue 2, pp 275–286 | Cite as

Characterization of Starch Synthetic Genes and Starch Granule during Seeds Development between Synthetic Hexaploid Wheat and its Parents

  • W. Li
  • Z. Y. Chen
  • Z. Li
  • X. F. Zhao
  • Z. E. Pu
  • G. Y. Chen
  • Q. T. Jiang
  • Y. M. Wei
  • Y. L. ZhengEmail author
Article

Abstract

To study the development of starch granules in polyploid wheats, we investigated the expression of starch synthetic genes between the synthetic hexaploid wheat SHW-L1, its parents T. turgidum AS2255 and diploid Ae. tauschii AS60. The synthetic hexaploid wheat SHW-L1 showed significantly higher starch content and grain weight than its parents. Scanning electron microscopy (SEM) showed that SHW-L1 rapidly developed starch granules than AS2255 and AS60. The amount of B-type granule in AS60 was less than that in SHW-L1 and AS2255. RT-qPCR result showed that the starch synthetic genes AGPLSU1, AGPLSU2, AGPSSU1, AGPSSU2, GBSSI, SSIII, PHO1 and PHO2 expressed at earlier stages with larger quantity in SHW-L1 than in its parents during wheat grain development. The expression of the above mentioned genes in AS60 was slower than in SHW-L1 and AS2255. The expression pattern of starch synthase genes was also associated with the grain weight and starch content in all three genotypes. The results suggested that the synthetic hexaploid wheat inherited the pattern of starch granule development and starch synthase gene expression from tetraploid parent. The results suggest that tetraploid wheat could plays more important role for starch quality improvement in hexaploid wheat.

Keywords

starch synthase starch granule seed synthetic hexaploid wheat tetraploid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball, S.G., Morell, M.K. 2003. From bacterial glycogentostarch: Understanding the biogenesis of the plant starch granule. Annu. Rev. Plant Biol. 54:207–233.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Bechtel, D.B., Wilson, J.D. 2003. Amyloplast formation and starch granule development in hard red winter wheat. Cereal Chem. 80:175–183.CrossRefGoogle Scholar
  3. Burton, R.A., Johnson, P.E., Beckles, D.M., Fincher, G.B., Jenner, H.L., Naldrett, M.J., Denyer, K. 2002. Characterization of the genes encoding the cytosolic and plastidial forms of ADP-glucose pyrophosphorylase in wheat endosperm. Plant Physiol. 130:1464–1475.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Colleoni, C., Dauvillée, D., Mouille, G., Buléon, A., Gallant, D., Bouchet, B., Morell, M., Samuel, M., Delrue B., d’Hulst, C., Bliard, C., Nuzillard, J., Ball, S. 1999. Genetic and biochemical evidence for the involvement of a-1,4 glucanotransferases in amylopectin synthesis. Plant Physiol. 120:993–1003.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Critchley, J.H., Zeeman, S.C., Takaha, T., Smith, A.M., Smith, S.M. 2001. A critical role for disproportionating enzyme in starch breakdown is revealed by a knock-out mutant in Arabidopsis. Plant J. 26:89–100.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Dian, W., Jiang, H., Wu, P. 2005. Evolution and expression analysis of starch synthase III and IV in rice. J. Exp. Bot. 412:623–632.CrossRefGoogle Scholar
  7. Flood, R.G., Lagudah, E.S., Halloran, G.M. 1992. Expression of vernalization requirement and spikelet number in synthetic hexaploid wheats and their Triticum tauschii and tetraploid wheat parents. Ann. Bot. 69:213–217.CrossRefGoogle Scholar
  8. Gao, M., Wanat, J., Stinard, P.S., James, M.G., Myers, A.M. 1998. Characterization of dull1, a maize gene coding for a novel starch synthase. Plant Cell 10:399–412.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Gororo, N.N., Flood, R.G., Eastwood, R.F., Eagles, H.A. 2001. Photoperiod and vernalization responses in Triticum turgidum × T. tauschii synthetic hexaploid wheats. Ann. Bot. 88:947–952.CrossRefGoogle Scholar
  10. Guzmán, C., Caballero, L., Alvarez, J.B. 2009. Variation in Spanish cultivated einkorn wheat (Triticum monococcum L. ssp. monococcum) as determined by morphological traits and waxy proteins. Genet. Resour. Crop. Evol. 56:601–604.CrossRefGoogle Scholar
  11. Guzmán, C., Caballero, L., Alvarez, J.B. 2011. Molecular characterization of the Wx-B1 allelic variants identified in cultivated emmer wheat and comparison with those of durum wheat. Mol. Breeding. 28:403–411.CrossRefGoogle Scholar
  12. Guo, G., Lv, D., Yan, X., Subburaj, S., Ge, P., Li, X., Hu, Y., Yan, Y. 2012. Proteome characterization of developing grains in bread wheat cultivars (Triticum aestivum L.). BMC Plant Biol. 12:147.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Hogg, A.C., Gause, K., Hofer, P., Martin, J.M., Graybosch, R.A., Hansen, L.E., Giroux, M.J. 2013. Creation of a high-amylose durum wheat through mutagenesis of starch synthase II (SSIIa). J. Cereal Sci. 57:377–383.CrossRefGoogle Scholar
  14. Huang, X.Q., Brûlé-Babel, A. 2010. Development of genome-specific primers for homoeologous genes in allopolyploid species: the waxy and starch synthase II genes in allohexaploid wheat (Triticum aestivum L.) as examples. BMC Res. Notes 3:140.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Huang, S., Sirikhachornkit, A., Su, X., Faris, J., Gill, B.S., Haselkorn, B., Gornicki, P. 2002. Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of wheat. Proc. Natl. Acad. Sci. USA 99:8133–8138.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Hurkman, W.J., McCue, K.F., Altenbach, S.B., Korn, A., Tanaka, C.K., Kothari, K.M., Johnson, E.L., Bechtel, D.B., Wilson, J.D., Anderson, O.D, DuPont, F.M. 2003. Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Sci. 164:873–881.CrossRefGoogle Scholar
  17. James, M.G., Denyer, K., Myers, A.M. 2003. Starch synthesis in the cereal endosperm. Curr. Opin. Plant. Biol. 6:215–222.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Kang, G.Z., Wang, Y.H., Liu, C., Shen, B.Q., Zheng, B.B., Feng, W., Guo, T.C. 2010. Difference in AGPase subunits could be associated with starch accumulation in grains between two wheat cultivars. Plant Growth Regul. 61:61–66.CrossRefGoogle Scholar
  19. Konik-Rose, C.M., Rahman, S., Appels, R., Moss, R., McMaster, G., Marshall, D.R., Stoddard, F.L. 2009. Starch characterisation and variability in GBSS loci of synthetic hexaploid wheats and their durum and Aegilops tauschii parents. Euphytica 167:203–216.CrossRefGoogle Scholar
  20. Li, Z., Sun, F., Xu, S., Chu, X., Mukai, Y., Yamamoto, M., Ali, S., Rampling, L., Kosar-Hashemi, B., Rahman, S., Morell, M.K. 2003. The structural organisation of the gene encoding class II starch synthase of wheat and barley and the evolution of the genes encoding starch synthases in plants. Funct. Integr. Genomics 3:76–85.PubMedPubMedCentralGoogle Scholar
  21. Li, W., Gao, Z., Xiao, W., Wei, Y.M., Liu, Y.X., Chen, G.Y., Pu, Z.E., Chen, H.P., Zheng, Y.L. 2012. Molecular diversity of restriction enzyme sites, indels and upstream open reading frames (uORFs) of 5’ untransalted regions (UTRs) of Waxy genes in Triticum L. and Aegilops L. species. Genet. Resour. Crop Evol. 59:1625–1647.CrossRefGoogle Scholar
  22. Li, W., Fu, B.B., Li, Z., Liu, Y.X., Pu, Z.E., Qi, P.F., Jiang, Q.T., Chen, G.Y., Wang, J.R., Wei, Y.M., Zheng, Y.L. 2016. Characterization of the waxy gene in diploid Triticum L. and Aegilops L. species and its geographic distribution. Genet. Resour. Crop Evol. 63:987–1002.CrossRefGoogle Scholar
  23. Limin, A.E., Houde, M., Chauvin, L.P., Fowler, D.B., Sarhan, F. 1995. Expression of the cold-induced wheat gene Wcs120 and its homologs in related species and interspecific combinations. Genome. 38:1023–1031.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Liu, B., Vega J.M., Feldman M. 1998. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. II. Changes in low-copy coding DNA sequences. Genome 41:535–542.PubMedPubMedCentralGoogle Scholar
  25. Ma, H., Singh, R.P., Mujeeb-Kazi, A. 1995. Resistance to stripe rust in Triticum turgidum, T. tauschii and their synthetic hexaploids. Euphytica 82:117–124.CrossRefGoogle Scholar
  26. Martin, C., Smith, A.M. 1995. Starch biosynthesis. Plant Cell 7:971–85.PubMedPubMedCentralGoogle Scholar
  27. Murai, J., Taira, T., Ohta, D. 1999. Isolation and characterization of the three Waxy genes encoding the granulebound starch synthase in hexaploid wheat. Gene 234:71–79.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Nieto-Taladriz, M.T., Rodríguez-Quijano, M., Carrillo, J.M. 2000. Polymorphism of waxy proteins in Spanish durum wheats. Plant Breed. 119:277–279.CrossRefGoogle Scholar
  29. Ozkan, H., Levy, A.A., Feldman, M. 2001. Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell 13:1735–1747.PubMedPubMedCentralGoogle Scholar
  30. Pena, R.J., Zarco-Hernandez, J., Mujeeb-Kazi, A. 1995. Glutenin subunit compositions and bread-making quality characteristics of synthetic hexaploid wheats derived from Triticum turgidum × Triticum tauschii (Coss.) Schmal crosses. J. Cereal Sci. 21:15–23.CrossRefGoogle Scholar
  31. Pfaffl, M.W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29:e45–e45.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Satoh, H., Shibahara, K., Tokunaga, T., Nishi, A., Tasaki, M., Hwang, S., Okita, T.W., Kaneko, N., Fujita, N., Yoshida, M., Hosaka, Y., Sato A., Utsumi, Y., Ohdan, T., Nakamura, Y. 2008. Mutation of the plastidial α-glucan phosphorylase gene in rice affects the synthesis and structure of starch in the endosperm. Plant Cell. 20(7):1833–1849.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Sestili, F., Botticella, E., Bedo, Z., Phillips, A., Lafiandra, D. 2010. Production of novel allelic variation for genes involved in starch biosynthesis through mutagenesis. Mol. Breeding 25:145–154.CrossRefGoogle Scholar
  34. Smith, A.M., Denyer, K., Martin, C.R. 1995. What controls the amount and structure of starch in storage organs?. Plant Physiol. 107:673–677.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Tetlow, I.J., Morell, M.K., Emes, M.J. 2004. Recent developments in understanding the regulation of starch metabolism in higher plants. J. Exp. Bot. 55:2131–2145.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Tomlinson, K., Denyer, K. 2003. Starch synthesis in cereal grains. Adv. Bot. Res. 40:1–61.CrossRefGoogle Scholar
  37. Tickle, P., Burrell, M.M., Coates, S.A., Emes, M., Tetlow, I.J., Bowsher, C.G. 2009. Characterization of plastidial starch phosphorylase in Triticum aestivum L. endosperm. J. Plant Phsiol. 166:1465–1478.CrossRefGoogle Scholar
  38. Villareal, R.L., Mujeeb-Kazi, A., Del Toro, E., Crossa, J., Rajaram, S. 1994. Agronomic variability in selected Triticum turgidum × T. tauschii synthetic hexaploid wheats. J. Agron. Crop Sci. 173:307–317.CrossRefGoogle Scholar
  39. Watanabe, N., Noda, Y., Goto, N., Miura, H. 1998. Variation for apparent amylose content of endosperm starch in Triticum durum and Aegilops squarrosa. Euphytica 101:283–286.CrossRefGoogle Scholar
  40. Yamamor, M., Guzmán, C. 2013. SNPs and an insertion sequence in five Wx-A1 alleles as factors for variant Wx-A1 protein in wheat. Euphytica 192:325–338.CrossRefGoogle Scholar
  41. Zhang, L.Q., Liu, D.C., Yan, Z.H., Lan, X.J., Zheng, Y.L., Zhou, Y.H. 2004. Rapid changes of microsatellite flanking sequence in the allopolyploidization of new synthesized hexaploid wheat. Sci. China C Life Sci. 47:553–561.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Zhang, C., Jiang, D., Liu, F., Cai, J., Dai, T., Cao, W. 2010. Starch granules size distribution in superior and inferior grains of wheat is related to enzyme activities and their gene expressions during grain filling. J. Cereal Sci. 51:226–233.CrossRefGoogle Scholar
  43. Zhu, T., Jackson, D.S., Wehling, R.L., Geera, B. 2008. Comparison of amylose determination methods and the development of a dual wavelength iodine binding technique. Cereal Chem. 85:51–58.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2018

Authors and Affiliations

  • W. Li
    • 1
    • 2
  • Z. Y. Chen
    • 1
    • 2
  • Z. Li
    • 1
    • 2
  • X. F. Zhao
    • 1
    • 2
  • Z. E. Pu
    • 1
    • 2
  • G. Y. Chen
    • 1
  • Q. T. Jiang
    • 1
  • Y. M. Wei
    • 1
  • Y. L. Zheng
    • 1
    Email author
  1. 1.Triticeae Research InstituteSichuan Agricultural UniversityChengdu, SichuanChina
  2. 2.College of AgronomySichuan Agricultural UniversityChengdu, SichuanChina

Personalised recommendations