Characterization of a Selenium-resistance-enhancing Homocysteine S-methyltransferase from Aegilops tauschii

Abstract

In this study, the cDNA of homocysteine S-methyltransferase was isolated from Aegilops tauschii Coss., with the gene accordingly designated as AetHMT1. Similar to other methyltransferases, AetHMT1 contains a GGCCR consensus sequence for a possible zinc-binding motif near the C-terminal and a conserved cysteine residue upstream of the zinc-binding motif. Analysis of AetHMT1 uncovered no obvious chloroplast or mitochondrial targeting sequences. We functionally expressed AetHMT1 in Escherichia coli and confirmed its biological activity, as evidenced by a positive HMT enzyme activity of 164.516 ± 17.378 nmol min-1 mg-1 protein when catalyzing the transformation of L-homocysteine. Compared with the bacterium containing the empty vector, E. coli harboring the recombinant AetHMT1 plasmid showed much higher tolerance to selenate and selenite. AetHMT1 transcript amounts in different organs were increased by Na2SeO4 treatment, with roots accumulating higher amounts than stems, old leaves and new leaves. We have therefore successfully isolated HMT1 from Ae. tauschii and characterized the biochemical and physiological functions of the corresponding protein.

Abbreviations

HMT:

homocysteine S-methyltransferase

Bp:

base pair

RT-PCR:

reverse transcription polymerase chain reaction

SMT:

selenocysteine methyltransferase

References

  1. Ari, Ş., Çakır, Ö., Turgut-Kara, N. 2010. Selenium tolerance in Astragalus chrysochlorus: identification of a cDNA fragment encoding a putative Selenocysteine methyltransferase. Acta Physiol. Plant. 32:1085–1092.

    CAS  Article  Google Scholar 

  2. Ausubel, F.M., Glazebrook, J., Greenberg, J., Katagiri, F., Mindrinos, M., Yu, G.L. 1993. Analysis of the Arabidopsis Defense Response to Pseudomonas Pathogens. J. Cell Biol. 14:393–403.

    CAS  Google Scholar 

  3. Bourgis, F., Roje. S., Nuccio, M.L., Fisher, D.B., Tarczynski, M.C., Li, C.J., Herschbach, C., Rennenberg, H., Pimenta, M.J., Shen, T.L., Gage, D.A., Hanson, A.D. 1999. S-methylmethionin plays a major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase. Plant Cell 11:1485–1497.

    CAS  Article  Google Scholar 

  4. Bradford, M.M. 1976. Rapid and Sensitive Method for Quantitation of Microgram Quantities of Protein Utilizing Principle of Protein-Dye Binding. Anal. Biochem. 72:248–254.

    CAS  Article  Google Scholar 

  5. Brown, T. A., Shrift, A. 1982. Selenium: Toxicity and Tolerance in Higher Plants. Biol. Rev. 57:59–84.

    CAS  Article  Google Scholar 

  6. Chen, X., Yang, G., Chen, J., Chen, X., Wen, Z., Ge, K. 1980. Studies on the relations of selenium and Keshan disease. Biol. Trace Elem. Res. 2:91–107.

    CAS  Article  Google Scholar 

  7. Ebert, R., Jakob, F. 2007. Selenium deficiency as a putative risk factor for osteoporosis. International Congress Series 1297:158–164.

    CAS  Article  Google Scholar 

  8. Guo, Z.F., Zhang, Z.B., Xu P., Guo, Y.N. 2013. Analysis of Nutrient Composition of Purple Wheat, Cereal Res. Commun. 41:293–303.

    CAS  Google Scholar 

  9. Hartikainen, H. 2005. Biogeochemistry of selenium and its impact on food chain quality and human health. J. Trace Elem. Med. Bio. 18:309–318.

    CAS  Article  Google Scholar 

  10. Hu, B. L., Huang, D.R., Xiao Y.Q., Fan Y.Y., Chen D.Z., Zhuang J.Y. 2016. Mapping QTLs for Mineral Element Contents in Brown and Milled Rice Using an Oryza sativa ×O. rufpogon Backcross Inbred Line Population. Cereal Res. Commun. 44:57–68.

    CAS  Article  Google Scholar 

  11. Jia, J., Zhao, S., Kong, X., Li, Y., Zhao, G., He, W., Appels, R., Pfeifer, M., Tao, Y., Zhang, X., Jing, R., Zhang, C., Ma, Y., Gao, L., Gao, C., Spannagl, M., Mayer, K.F., Li, D., Pan, S., Zheng, F., Hu, Q., Xia, X., Li, J., Liang, Q., Chen, J., Wicker, T., Gou, C., Kuang, H., He, G., Luo, Y., Keller, B., Xia, Q., Lu, P., Wang, J., Zou, H., Zhang, R., Xu, J., Gao, J., Middleton, C., Quan, Z., Liu, G., Wang, J., Yang, H., Liu, X., He, Z., Mao, L., Wang, J. 2013. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95.

    CAS  Article  Google Scholar 

  12. Koutmos, M., Pejchal, R., Bomer, T.M., Matthews, R.G., Smith, J.L., Ludwig, M.L. 2008. Metal active site elasticity linked to activation of homocysteine in methionine synthases. Proc. Natl. Acad. Sci. U.S.A. 105:3286–3291.

    CAS  Article  Google Scholar 

  13. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.

    CAS  Article  Google Scholar 

  14. Ling, H.Q., Zhao, S., Liu, D., Wang, J., Sun, H., Zhang, C., Fan, H., Li, D., Dong, L., Tao, Y., Gao, C., Wu, H., Li, Y., Cui, Y., Guo, X., Zheng, S., Wang, B., Yu, K., Liang, Q., Yang, W., Lou, X., Chen, J., Feng, M., Jian, J., Zhang, X., Luo, G., Jiang, Y., Liu, J., Wang, Z., Sha, Y., Zhang, B., Wu, H., Tang, D., Shen, Q., Xue, P., Zou, S., Wang, X., Liu, X., Wang, F., Yang, Y., An, X., Dong, Z., Zhang, K., Zhang, X., Luo, M.C., Dvorak, J., Tong, Y., Wang, J., Yang, H., Li, Z., Wang, D., Zhang, A., Wang, J. 2013. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87–90.

    CAS  Article  Google Scholar 

  15. Lozada-Ramirez, J.D., Martinez-Martinez, I., Garcia-Carmona, F., Sanchez-Ferrer, A. 2008. Cloning, overexpression, purification, and characterization of S-adenosylhomocysteine hydrolase from Corynebacterium efficiens YS-314. Biotechnol. Progr. 24:120–127.

    CAS  Article  Google Scholar 

  16. Lyi, S.M., Heller, L.I., Rutzke, M., Welch, R.M., Kochian, L.V., Li, L. 2005. Molecular and biochemical characterization of the selenocysteine Se-methyltransferase gene and Se-methylselenocysteine synthesis in broccoli. Plant Physiol. 138:409–420.

    CAS  Article  Google Scholar 

  17. Lyi, S.M., Zhou, X., Kochian, L.V., Li, L. 2007. Biochemical and molecular characterization of the homocysteine S-methyltransferase from broccoli (Brassica oleracea var. italica). Phytochem. 68:1112–1119.

    CAS  Article  Google Scholar 

  18. Lyons, G.H., Judson, G.J., Ortiz-Monasterio, I., Genc, Y., Stangoulis, J.C., Graham, R.D. 2005. Selenium in Australia: selenium status and biofortification of wheat for better health. J. Trace Elem. Med. Bio. 19:75–82.

    CAS  Article  Google Scholar 

  19. Millian, N.S., Garrow, T.A. 1998. Human betaine-homocysteine methyltransferase is a zinc metalloenzyme. Arch. Biochem. Biophys. 356:93–98.

    CAS  Article  Google Scholar 

  20. Neuhierl, B., Böck, A. 1996. On the mechanism of selenium tolerance in selenium-accumulating plants. Purification and characterization of a specific selenocysteine methyltransferase from cultured cells of Astragalus bisculatus. Eur. J. Biochem. 239:235–238.

    CAS  PubMed  Google Scholar 

  21. Neuhierl, B., Thanbichler, M., Lottspeich, F., Böck, A. 1999. A family of S-methylmethionine-dependent thiol/ selenol methyltransferases – Role in selenium tolerance and evolutionary relation. J. Biolog. Chem. 274:5407–5414.

    CAS  Article  Google Scholar 

  22. Peariso, K., Goulding, C.W., Huang, S., Matthews, R.G., Penner-Hahn, J.E. 1998. Characterization of the zinc binding site in methionine synthase enzymes of Escherichia coli: The role of zinc in the methylation of homocysteine. J. Am. Chem. Soc. 120:8410–8416.

    CAS  Article  Google Scholar 

  23. Liu, P., Zhou, J.P., Xu, X.L., Hao, Q.Q., Wen, X.Y., Wang, L.,Tian, Y.P. 2014. Activity assay and preservation of S-homocysteine methyltransferas. International Journal of Laboratory Medicine 35:1526–1528.

    CAS  Google Scholar 

  24. Peng, A., and Yang, C.L. 1991. Examination of the roles of selenium in the Kaschin-Beck disease. Biol. Trace Elem. Res. 28:1–9.

    CAS  Article  Google Scholar 

  25. Ranocha, P., Bourgis, F., Ziemak, M.J., Rhodes, D., Gage, D.A., Hanson, A.D. 2000. Characterization and functional expression of cDNAs encoding methionine-sensitive and insensitive homocysteine S-methyltransferases from Arabidopsis. J. Biolog. Chem. 275:15962–15968.

    CAS  Article  Google Scholar 

  26. Ranocha, P., McNeil, S.D., Ziemak, M.J., Li, C., Tarczynski, M.C., Hanson, A.D. 2001. The S-methylmethionine cycle in angiosperms: ubiquity, antiquity and activity. Plant J. 25:575–584.

    CAS  Article  Google Scholar 

  27. Sambrook, J., Fritsch, E.F., Maniatis, T. 1989. Molecular cloning: A laboratory manual: 2nd ed. Immunology 49:895–909.

    Google Scholar 

  28. Schiavon, M., Pilon-Smits, E.A. 2017. Selenium Biofortification and Phytoremediation Phytotechnologies: A Review. J. Environ. Qual. 46:10–19.

    CAS  Article  Google Scholar 

  29. Sors, T.G., Ellis, D.R., Salt, D.E. 2005. Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth. Res. 86:373–389.

    CAS  Article  Google Scholar 

  30. Sors, T.G., Martin, C.P., Salt, D.E. 2009. Characterization of selenocysteine methyltransferases from Astragalus species with contrasting selenium accumulation capacity. Plant J. 59:110–122.

    CAS  Article  Google Scholar 

  31. Szira, F., Monostori, I., Galiba,G., Rakszegi, M., Bálint, A.F. 2014. Micronutrient Contents and Nutritional Values of Commercial Wheat Flours and Flours of Field-grown Wheat Varieties – A Survey in Hungary. Cereal Res. Commun. 42:293–302.

    CAS  Article  Google Scholar 

  32. Thomson, C.D. 2004. Assessment of requirements for selenium and adequacy of selenium status: a review. Eur. J. Clin. Nutr. 58:391–402.

    CAS  Article  Google Scholar 

  33. White, P.J. 2016. Selenium accumulation by plants. Ann. Bot. 117:217–235.

    CAS  PubMed  Google Scholar 

  34. White, P.J., Brown, P.H. 2010. Plant nutrition for sustainable development and global health. Ann. Bot. 105:1073–1080.

    CAS  Article  Google Scholar 

  35. Zhao, D.Y., Sun, F.L., Zhang, B., Zhang, Z.Q., Yin, L.Q. 2015. Systematic Comparisons of Orthologous Selenocysteine Methyltransferase and Homocysteine Methyltransferase Genes from Seven Monocots Species. Notulae Scientia Biologicae 7:210–216.

    CAS  Article  Google Scholar 

  36. Zhu, L., Jiang, C.J., Deng, W.W., Gao, X., Wang, R.J., Wan, X.C. 2007. Cloning and expression of selenocysteine methyltransferase cDNA from Camellia sinensis. Act. Physiol. Plant. 30:167–174.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to B. Zhang or H. G. Zhang.

Additional information

Communicated by A. Börner

Electronic supplementary material

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, L.J., Shang, Y., Liu, T. et al. Characterization of a Selenium-resistance-enhancing Homocysteine S-methyltransferase from Aegilops tauschii. CEREAL RESEARCH COMMUNICATIONS 46, 263–274 (2018). https://doi.org/10.1556/0806.46.2018.08

Download citation

Keywords

  • homocysteine S-methyltransferase
  • Aegilops tauschii
  • selenium