Cereal Research Communications

, Volume 47, Issue 1, pp 22–31 | Cite as

Assessment of Drought Tolerance Based Impacts with Over-expression of ZmLTP3 in Maize (Zea mays L.)

  • Y. Li
  • K. Zhou
  • M. Jiang
  • B. Zhang
  • M. Aslam
  • H. ZouEmail author


Numerous studies showed that lipid transfer proteins (LTPs) play important roles in flower, development, cuticular wax deposition and pathogen responses; however, their roles in abiotic stresses are relatively less reported. This study characterized the function of a maize LTP gene (ZmLTP3) during drought stress. ZmLTP3 gene was transferred into maize inbred line Jing2416; subsequently the glyphosate and drought tolerance of the over-expression (OE) lines were analyzed. Analysis showed that OE lines could significantly enhance drought tolerance. Transgenic maize lines OE6, OE7 and OE8 showed lower cell membrane damage, higher chlorophyll contents, higher protective enzymes activities, better growth and development under drought condition. The results strongly indicated that overexpression of ZmLTP3 could increase drought tolerances in maize.


maize lipid transfer protein ZmLTP3 abiotic stress tolerance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cameron, K.D., Teece, M.A., Smart, L.B. 2006. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol. 140:176–183.CrossRefGoogle Scholar
  2. Canevascini, S., Caderas, D., Mandel, T., Fleming, A., Dupuis, I., Kuhlemeier, C. 1996. Tissue-specific expression and promoter analysis of the tobacco Ltp1 gene. Plant Physiol. 112:513–524.CrossRefGoogle Scholar
  3. Castro, M.S., Gerhardt, I.R., Orru, S., Pucci, P., Bloch, C. 2003. Purification and characterization of a small (7.3 kDa) putative lipid transfer protein from maize seeds. J. Chromatogr. B. 794:109–114.CrossRefGoogle Scholar
  4. Debono, A., Yeats, T.H., Rose, J.K., Bird, D., Jetter, R., Kunst, L., Samuels, L. 2009. Arabidopsis LTPG is a glycosylphosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface. Plant Cell. 21:1230–1238.CrossRefGoogle Scholar
  5. Edstam, M.M., Viitanen, L., Salminen, T.A., Edqvist, J. 2011. Evolutionary history of the non-specific lipid transfer proteins. Mol. Plant. 4:947–964.CrossRefGoogle Scholar
  6. Edstam, M.M., Laurila, M., Höglund, A., Raman, A., Dahlström, K.M., Salminen, T.A., Edqvist, J., Blomqvist, K. 2014. Characterization of the GPI-anchored lipid transfer proteins in the moss Physcomitrella patens. Plant Physiol. Biochem. 75:55–69.CrossRefGoogle Scholar
  7. Fan, Y., Du, K., Gao, Y., Kong, Y., Chu, C., Sokolovc, V., Wang, Y. 2013. Transformation of LTP gene into Brassica napus to enhance its resistance to Sclerotinia sclerotiorum. Russ. J. Genet+. 49:380–387.CrossRefGoogle Scholar
  8. Garcia-Garrido, J.M., Menossi, M., Puigdimen, P., Martinez-Izquierdo, J.A., Delseny, M. 1998. Characterization of a gene encoding an abscissic acid inducible type 2 lipid transfer protein from rice. FEBS Lett. 428: 193–199.CrossRefGoogle Scholar
  9. Huang, M.D., Chen, T.L., Huang, A.H. 2013. Abundant type III lipid transfer proteins in Arabidopsis tapetum are secreted to the locule and become a constituent of the pollen exine. Plant physiol. 163:1218–1229.CrossRefGoogle Scholar
  10. Iraki, N.M., Singh, N.K., Bressan, R.A., Carpita, N.C. 1989. Cell walls of tobacco cells and changes in composition associated with reduced growth upon adaptation to water and saline stress. Plant Physiol. 91:48–53.CrossRefGoogle Scholar
  11. Kader, J.C. 1996. Lipid-transfer proteins in plants. Annu. Rev. Plant Phys. 47:627–654.CrossRefGoogle Scholar
  12. Kader, J.C. 1997. Lipid transfer proteins: a puzzling family of plant proteins. Trends Plant Sci. 2:66–70.CrossRefGoogle Scholar
  13. Kader, J.C., Julienne, M., Vergnolle, C. 1984. Purification and characterization of a spinach-leaf protein capable of transferring phospholipids from liposomes to mitochondria or chloroplasts. Eur. J. Biochem. 139:411–416.CrossRefGoogle Scholar
  14. Kirubakaran, S.I., Begum, S.M., Ulaganathan, K., Sakthivel, N. 2008. Characterization of a new antifungal lipid transfer protein from wheat. Plant Physiol. Bioch. 46:918–927.CrossRefGoogle Scholar
  15. Kumar, P., Tewari, R.K., Sharma, P.N. 2008. Modulation of copper toxicity-induced oxidative damage by excess supply of iron in maize plants. Plant Cell Rep. 27:399–409.CrossRefGoogle Scholar
  16. Lee, S.B., Go, Y.S., Bae, H.J., Park, J.H., Cho, S.H., Cho, H.J., Lee, D.S., Park, O.K., Hwang, I., Suh, M.C. 2009. Disruption of glycosylphosphatidylinositol-anchored lipid transfer protein gene altered cuticular lipid composition, increased plastoglobules, and enhanced susceptibility to infection by the fungal pathogen Alternaria brassicicola. Plant Physiol. 150:42–54.CrossRefGoogle Scholar
  17. Li, J., Guo, X.W., Zhang, Z.B, Sun, H.J., Zou, H.W., Luo, C., Huang, C.L., Yu, R., Wu, Z.Y. 2014. Studies on transferring ATNCED3 into maize inbred line. Crops. 1:58–62.Google Scholar
  18. Mittova, V., Guy, M., Ta, M., Volokita, M. 2004. Salinity up-regulates the antioxidative system in root mito-chondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J. Exp. Bot. 55:1105–1113.CrossRefGoogle Scholar
  19. Noctor, G., Foyer, C.H. 1998. Simultaneous measurement of foliar glutathione, gamma-glutamylcysteine, and amino acids by high performance liquid chromatography: comparison with two other assay methods for glutathione. Anal. Biochem. 264:98–110.CrossRefGoogle Scholar
  20. Nonami, H., Boyer, J.S. 1990. Primary events regulating stem growth at low water potentials. Plant Physiol. 93:1601–1609.CrossRefGoogle Scholar
  21. Patkar, R.N., Chattoo, B.B. 2006. Transgenic indica rice expressing nsLTP like protein shows enhanced resistance to both fungal and bacterial pathogens. Mol. Breeding. 17:159–171.CrossRefGoogle Scholar
  22. Sterk, P., Booij, H., Schellekens, G.A., Van Kammen, A., De Vries, S.C. 1991. Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell. 3:907–921.PubMedPubMedCentralGoogle Scholar
  23. Suelves, M., Puigdomenech, P. 1997. Different lipid transfer protein mRNA accumulates in distinct parts of Prunus amygdalus flower. Plant Sci. 129:49–56.CrossRefGoogle Scholar
  24. Sun, X.Y., Zhu, Y., Zhao, M.M., Li, Z.X., Zou, H.W. 2014. Cloning and characterization of a lipid transfer protein gene, ZmLTP3, from maize. J. Maize Sci. 22:62–66.Google Scholar
  25. Trevor, H.Y., Jocelyn, K.C. 2008. The biochemistry and biology of extracellular plant lipid transfer proteins (LTPs). Protein Sci. 17:191–198.CrossRefGoogle Scholar
  26. Zou, H.W., Wang, X.H., Huang, C.L., Chen, J.S., Zhang, X.H., Luo, C., Yu, R., Wu, Z.Y. 2014. Stress-inducible expression of a gene encoding C-repeat binding factor 4 (CBF4) from Arabidopsis improved performance of transgenic maize under drought condition. Plant Omics J. 7:94–101.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2019

Authors and Affiliations

  • Y. Li
    • 1
  • K. Zhou
    • 1
  • M. Jiang
    • 1
  • B. Zhang
    • 1
  • M. Aslam
    • 2
  • H. Zou
    • 1
    Email author
  1. 1.College of AgricultureYangtze UniversityChina
  2. 2.Department of Plant Breeding & GeneticsUniversity of AgricultureFaisalabadPakistan

Personalised recommendations