Advertisement

Cereal Research Communications

, Volume 47, Issue 1, pp 32–41 | Cite as

Physiological Responses of Spring Wheat to 5-Aminolevulinic Acid under Water Stress Applied at Seedling Stage

  • A. OstrowskaEmail author
  • J. Biesaga-Kościelniak
  • M. T. Grzesiak
  • T. Hura
Physiology

Abstract

5-Aminolevulinic acid relieves the effects of environmental stresses in plants. Therefore, the aim of our study was to evaluate the effects of 5-aminolevulinic acid (5-ALA) on the activity of the photosynthetic apparatus in spring wheat. Other analyzed parameters involved plant height, relative turgidity, membrane status, and chlorophyll level. The plant material consisted of three genotypes of spring wheat (J × Z, R × K, K × M), subjected to mild and severe drought in the early phase of vegetative development.

5-ALA showed a positive effect on the activity of the photosynthetic apparatus under water stress. The relieving action of 5-ALA on PSII was the most evident in J × Z genotype during severe soil drought. 5-ALA positively influenced the maximum photochemical efficiency of PSII (Fv/Fm), the overall performance index of PSII photochemistry (PI) and the effective quantum field of PSII (φEo). In the same genotype, the investigated acid stimulated light energy absorption (ABS/CSm), and enhanced the amount of excitation energy trapped in PSII reaction centers (TRo/CSm) and the amount of energy used for electron transport (ETo/CSm).

Moreover, 5-aminolevulinic acid showed its potential to overcome the adverse effects of water deficit on Triticum aestivum L. by increasing plant growth, relative turgidity, and chlorophyll content and reducing the degree of damage to cell membranes at the early phase of vegetative development.

Keywords

5-aminolevulinic acid chlorophyll fluorescence drought stress wheat 

Abbreviations

5-ALA

5-aminolevulinic acid

ABS/CSm

light energy absorption

Chl

chlorophyll

CSm

leaf cross-section

DIo/CSm

energy amount dissipated from PSII

EL

electrolyte leakage

ETo/CSm

amount of energy used for electron transport

Fv/Fm

quantum yield of PSII

MWC

maximum water holding capacity

PI

overall performance index of PSII photochemistry

RC/CSm

number of active reaction centers

RT

relative turgidity

TRo/CSm

amount of excitation energy trapped in PSII reaction centers

φEo

quantum yield of electron transport

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad, R., Ali, S., Hannan, F., Rizwan, M., Iqbal, M., Hassan, Z., Akram, N.A., Maqbool, S., Abbas, F. 2017. Promotive role of 5-aminolevulinic acid on chromium-induced morphological, photosynthetic, and oxidative changes in cauliflower (Brassica oleracea botrytis L.). Environ. Sci. Pollut. Res. 24:8814–8824.CrossRefGoogle Scholar
  2. Akram, N.A., Ashraf, M., Al-Qurainy, F. 2012. Aminolevulinic acid-induced changes in some key physiological attributes and activities of antioxidant enzymes in sunflower (Helianthus annuus L.) plants under saline regimes. Sci. Hortic. 142:143–148.CrossRefGoogle Scholar
  3. Akram, N.A., Ashraf, M. 2013. Regulation in plant stress tolerance by a potential plant growth regulator, 5-aminolevulinic acid. J. Plant Growth Regul. 32:663–679.CrossRefGoogle Scholar
  4. Akram, N.A., Iqbal, M., Muhammad, A., Ashraf, M., Al-Qurainy, F., Shafiq, S. 2018. Aminolevulinic acid and nitric oxide regulate oxidative defense and secondary metabolisms in canola (Brassica napus L.) under drought stress. Protoplasma 255:163–174.CrossRefGoogle Scholar
  5. Ali, B., Wang, B., Ali, S., Ghani, M.A., Hayat, M.T., Yang, C., Xu, L., Zhou, W.J. 2013. 5-Aminolevulinic acid ameliorates the growth, photosynthetic gas exchange capacity, and ultrastructural changes under cadmium stress in Brassica napus L. J. Plant Growth Regul. 32:604–614.CrossRefGoogle Scholar
  6. Al-Khateeb, S.A. 2006. Promotive effect of 5-aminolevulinic acid on growth, yield and gas exchange capacity of barley (Hordeum vulgare L.) grown under different irrigation regimes. J. King Saud Univ. Agric. Sci. 18:103–111.Google Scholar
  7. Al-Thabet, S.S. 2006. Promotive effect of 5-aminolevulinic acid on growth and yield of wheat grown under dry conditions. J. Agron. 5:45–49.CrossRefGoogle Scholar
  8. Appenroth, K.J., Stöckel, J., Srivastava, A., Strasser, R.J. 2001. Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environ. Pollut. 115:49–64.CrossRefGoogle Scholar
  9. Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts polyphenol oxidase in Beta vulgaris. Plant. Physiol. 24:1–15.CrossRefGoogle Scholar
  10. Balestrasse, K.B., Tomaro, M.L., Batlle, A., Noriega, G.O. 2010. The role of 5-aminolevulinic acid in the response to cold stress in soybean plants. Phytochemistry 71:2038–2045.CrossRefGoogle Scholar
  11. Barrs, H.D., Weatherley, P.E. 1962. A re-examination of the relative turgidity techniques for estimating water deficits in leaves. Aust. J. Biol. Sci. 15:413–428.CrossRefGoogle Scholar
  12. Gietler, M., Nykiel, M., Orzechowski, S., Fettke, J., Zagdańska, B. 2017. Protein carbonylation linked to wheat seedling tolerance to water deficiency. Environ. Exp. Bot. 137:84–95.CrossRefGoogle Scholar
  13. Gill, R.A., Ali, B., Islam, F., Farooq, M.A., Gill, M.B., Mwamba, T.M., Zhou, W. 2015. Physiological and molecular analyses of black and yellow seeded Brassica napus regulated by 5-aminolivulinic acid under chromium stress. Plant Physiol. Bioch. 94:130–143.CrossRefGoogle Scholar
  14. Hura, T., Hura, K., Ostrowska, A., Dziurka, K. 2015. Rapid plant rehydration initiates permanent and adverse changes in the photosynthetic apparatus of triticale. Plant Soil 97:127–145.CrossRefGoogle Scholar
  15. Jaspars, E.M.J. 1965. Pigmentation of tobacco crown-gall tissues cultured in vitro in dependence of the composition of the medium. Physiol. Plant 18:933–940.CrossRefGoogle Scholar
  16. Korkmaz, A., Korkmaz, Y. 2009. Promotion by 5-aminolevulenic acid of pepper seed germination and seedling emergence under low-temperature stress. Sci. Hortic. 119:98–102.CrossRefGoogle Scholar
  17. Korkmaz, A., Korkmaz, Y., Demirkiran, A.R. 2010. Enhancing chilling stress tolerance of pepper seedlings by exogenous application of 5-aminolevulinic acid. Environ. Exp. Bot. 67:495–501.CrossRefGoogle Scholar
  18. Kosar, F., Akrama, N.A., Ashraf, M. 2015. Exogenously-applied 5-aminolevulinic acid modulates some key physiological characteristics and antioxidative defense system in spring wheat (Triticum aestivum L.) seedlings under water stress. S. Afr. J. Bot. 96:71–77.CrossRefGoogle Scholar
  19. Lazár, D. 1999. Chlorophyll a fluorescence induction. Biochim. Biophys. Acta 1412:1–28.CrossRefGoogle Scholar
  20. Lichtenthaler, H.K., Rinderle, U. 1988. The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRT Crit. Rev. Anal. Chem. 19:29–85.CrossRefGoogle Scholar
  21. Liu, M., Li, J., Niu, J., Wang, R., Song, J., Lv, J., Zong, X., Wang, S. 2016. Interaction of drought and 5-aminolevulinic acid on growth and drought resistance of Leymus chinensis seedlings. Acta Ecol. Sin. 36:180–188.CrossRefGoogle Scholar
  22. Memon, S.A., Hou, X., Wang, L., Li, Y. 2009. Promotive effect of 5-aminolevulinic acid on chlorophyll, anti-oxidative enzymes and photosynthesis of Pakchoi (Brassica campestris ssp. Chinensis var. communis Tsen et Lee). Acta Physiol. Plant. 31:51–57.CrossRefGoogle Scholar
  23. Naeem, M.S., Rasheed, M., Liu, D., Jin, Z.L., Ming, D.F., Yoneyama, K., Takeuchi, Y., Zhou, W.J. 2011. 5-Aminolevulinic acid ameliorates salinity-induced metabolic, water-related and biochemical changes in Brassica napus L. Acta Physiol. Plant. 33:517–528.CrossRefGoogle Scholar
  24. Nishihara, E., Kondo, K., Parvez, M.M., Takahashi, K., Watanabe, K., Tanaka, K. 2003. Role of 5-aminolevulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated spinach (Spinacia oleracea). J. Plant Physiol. 160:1085–1091.CrossRefGoogle Scholar
  25. Rebeiz, C.A., Reddy, K.N., Nandihalli, U.B., Velu, J. 1990. Tetrapyrrole-dependent photodynamic herbicides. Photochem. Photobiol. 52:1099–1117.CrossRefGoogle Scholar
  26. Srivastava, A., Strasser, R.J. 1977. Constructive and destructive actions of light on the photosynthetic apparatus. J. Sci. Industrial Res. 56:133–148.Google Scholar
  27. Strasser, R.J., Srivastava, A., Tsimilli-Michael, M. 2000. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus, M., Pathre, U., Mohanty, P. (eds), Probing photosynthesis: Mechanism, regulation and adaptation. Taylor and Francis, London, pp. 445–483.Google Scholar
  28. Sun, Y.P., Zhang, Z.P., Wang, L.J. 2009. Promotion of 5-aminolevulinic acid treatment on leaf photosynthesis is related with increase of antioxidant enzyme activity in watermelon seedlings under shade condition. Photosynthetica 47:347–354.CrossRefGoogle Scholar
  29. Van Der Tol, C., Verhoef, W., Rosema, A. 2009. A model for chlorophyll fluorescence and photosynthesis at leaf scale. Agric. For. Meteorol. 149:96–105.CrossRefGoogle Scholar
  30. Von Wettstein, D., Gough, S., Kananagara, C.G. 1995. Chlorophyll biosynthesis. Plant Cell 7:1039–1105.CrossRefGoogle Scholar
  31. Wang, Y., Wei, S., Wang, J., Su, X., Suo, B., Qin, F., Zhao, H. 2018. Exogenous application of 5-aminole-vulinic acid on wheat seedlings under drought stress enhances the transcription of psbA and psbD genes and improves photosynthesis. Braz. J. Bot. (doi:10.1007/s40415-018-0455-y).Google Scholar
  32. Xu, F., Zhu, J., Cheng, S., Zhang, W., Wang, Y. 2010. Effect of 5-aminolevulinic acid on photosynthesis, yield, nutrition and medicinal values of kudzu (Pueraria phaseoloides). Trop. Grasslands 44:260–265.Google Scholar
  33. Zhang, Z.J., Li, H.Z., Zhou, W.J., Takeuchi, Y., Yoneyama, K. 2006. Effect of 5-aminolevulinic acid on development and salt tolerance of potato (Solanum tuberosum L.) microtubers in vitro. Plant Growth Regul. 49:27–34.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2019

Authors and Affiliations

  • A. Ostrowska
    • 1
    Email author
  • J. Biesaga-Kościelniak
    • 1
  • M. T. Grzesiak
    • 1
  • T. Hura
    • 1
  1. 1.Polish Academy of SciencesThe Franciszek Górski Institute of Plant PhysiologyKrakówPoland

Personalised recommendations