Cereal Research Communications

, Volume 46, Issue 4, pp 717–728 | Cite as

Rotational Diversity Effects in a Triticale-based Cropping System

  • B. L. BéresEmail author
  • N. Z. Lupwayi
  • F. J. Larney
  • B. Ellert
  • E. G. Smith
  • T. K. Turkington
  • D. Pageau
  • K. Semagn
  • Z. Wang


Research indicates that not all crops respond similarly to cropping diversity and the response of triticale (× Triticosecale ssp.) has not been documented. We investigated the effects of rotational diversity on cereals in cropping sequences with canola (Brassica napus L.), field pea (Pisum sativum L.), or an intercrop (triticale:field pea). Six crop rotations were established consisting of two, 2-yr low diversity rotations (LDR) (continuous triticale (T-T_LDR) and triticale-wheat (Triticum aestivum L.) (T-W_LDR)); three, 2-yr moderate diversity rotations (MDR) (triticale-field pea (T-P_MDR), triticale-canola (T-C_MDR), and a triticale: field pea intercrop (T- in P_MDR)); and one, 3-yr high diversity rotation (HDR) (canola-triticale-field pea (C-T-P_HDR)). The study was established in Lethbridge, Alberta (irrigated and rainfed); Swift Current (rainfed) and Canora (rainfed), Saskatchewan, Canada; and carried out from 2008 to 2014. Triticale grain yield for the 3-yr HDR was superior over the LDR rotations and the MDR triticale-field pea system; however, results were similar for triticale-canola, and removal of canola from the system caused a yield drag in triticale. Triticale biomass was superior for the 3-yr HDR. Moreover, along with improved triticale grain yield, the 3-yr HDR provided greater yield stability across environments. High rotational diversity (C-T-P_HDR) resulted in the highest soil microbial community and soil carbon concentration, whereas continuous triticale provided the lowest. Net economic returns were also superior for C-T-P_HDR ($670 ha–1) and the lowest for T-W_LDR ($458 ha–1). Overall, triticale responded positively to increased rotational diversity and displayed greater stability with the inclusion of field pea, leading to improved profitability and sustainability of the system.


rotational diversity triticale pulses canola bioethanol production grain yield net economic returns 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2018_4604717_MOESM1_ESM.pdf (724 kb)
Rotational Diversity Effects in a Triticale-based Cropping System


  1. Andow, D. 1983. The extent of monoculture and its effects on insect pest populations with particular reference to wheat and cotton. Agr. Ecosyst. Environ. 9:25–35.CrossRefGoogle Scholar
  2. Angus, J.F., Herwaarden, A.F.V., Howe, G.N. 1991. Productivity and break crop effects of winter-growing oilseeds. Aust. J. Exp. Agric. 31:669–677.CrossRefGoogle Scholar
  3. Anonymous. 2015. Crop planning guide 2015 Government of Saskatchewan, Regina, SK, p. 16.Google Scholar
  4. Beres, B., Pozniak, C., Bressler, D., Gibreel, A., Eudes, F., Graf, R., Randhawa, H., Salmon, D., McLeod, G., Dion, Y., Irvine, B., Voldeng, H., Martin, R., Pageau, D., Comeau, A., DePauw, R., Phelps, S., Spaner, D., 2013a. A Canadian ethanol feedstock study to benchmark the relative performance of triticale: II. Grain quality and ethanol production. Agron. J. 105:1707–1720.Google Scholar
  5. Beres, B., Pozniak, C., Eudes, F., Graf, R., Randhawa, H., Salmon, D., McLeod, G., Dion, Y., Irvine, B., Voldeng, H., Martin, R., Pageau, D., Comeau, A., DePauw, R., Phelps, S., Spaner, D. 2013b. A Canadian ethanol feedstock study to benchmark the relative performance of triticale: I. Agronomics. Agron. J. 105:1695–1706.CrossRefGoogle Scholar
  6. Beres, B.L., Harker, K.N., Clayton, G.W., Blackshaw, R.E., Graf, R.J. 2010. Weed competitive ability of spring and winter cereals in the Northern Great Plains. Weed Technol. 24:108–116.CrossRefGoogle Scholar
  7. Blackshaw, R.E., Larney, F.J., Lindwall, C.W., Watson, P.R., Derksen, D.A. 2001. Tillage intensity and crop rotation affect weed community dynamics in a winter wheat cropping system. Can. J. Plant Sci. 81:805–813.CrossRefGoogle Scholar
  8. Cook, A., Wilhelm, N. Vvsr, G. Frischke, A. 2012. The impact of crop rotation and nutrition on Rhizoctonia disease incidence in cereals on grey calcareous soils of upper Eyre Peninsula, in: Yunusa., I. (ed.), Capturing Opportunities and Overcoming Obstacles in Australian Agronomy. Proceedings of 16th Australian Agronomy Conference. Armidale, NSW, pp. 14–18.Google Scholar
  9. Cutforth, H.W., Angadi, S.V., McConkey, B.G., Miller, P.R., Ulrich, D., Gulden, R., Volkmar, K.M., Entz, M.H., Brandt, S.A. 2013. Comparing rooting characteristics and soil water withdrawal patterns of wheat with alternative oilseed and pulse crops grown in the semiarid Canadian prairie. Can. J. Soil Sci. 93:147–160.CrossRefGoogle Scholar
  10. Davis, A.S., Hill, J.D., Chase, C.A., Johanns, A.M., Liebman, M. 2012. Increasing cropping system diversity balances productivity, profitability and environmental health. PLoS ONE 7, e47149.CrossRefGoogle Scholar
  11. Debaeke, P., Hilaire, A. 1997. Production of rainfed and irrigated crops under different crop rotations and input levels in southwestern France. Can. J. Plant Sci. 77:539–548.CrossRefGoogle Scholar
  12. Doran, J.W. 2002. Soil health and global sustainability: translating science into practice. Agric. Ecosyst. Environ. 88:119–127.CrossRefGoogle Scholar
  13. Francis, T.R., Kannenberg, L.W. 1978. Yield stability studies in short-season maize. I. A descriptive method for grouping genotypes. Can. J. Plant Sci. 58:1029–1034.CrossRefGoogle Scholar
  14. Gan, Y., Hamel, C., O’Donovan, J.T., Cutforth, H., Zentner, R.P., Campbell, C.A., Niu, Y., Poppy, L. 2015. Diversifying crop rotations with pulses enhances system productivity. Sci. Rep. 5:14625.CrossRefGoogle Scholar
  15. Gaudin, A.C.M., Tolhurst, T.N., Ker, A.P., Janovicek, K., Tortora, C., Martin, R.C., Deen, W. 2015. Increasing crop diversity mitigates weather variations and improves yield stability. PLoS ONE 10, e0113261.CrossRefGoogle Scholar
  16. Głąb, T., Ścigalska, B., Łabuz, B. 2014. Effect of crop rotation on the root system morphology and productivity of triticale (×Triticosecale Wittm). J. Agric. Sci. 152:642–654.CrossRefGoogle Scholar
  17. Griffith, D.R., West, T.D., Parsons, S.D., Kladivko, E.J., Mannering, J.V. 1988. Long-term tillage and rotation effects on corn growth and yield on high and low organic matter, poorly drained soils. Agron. J. 80:599–605.CrossRefGoogle Scholar
  18. Harker, K.N., O’Donovan, J.T., Turkington, T.K., Blackshaw, R.E., Lupwayi, N.Z., Smith, E.G., Johnson, E.N., Gan, Y., Kutcher, H.R., Dosdall, L.M., Peng, G. 2015. Canola rotation frequency impacts canola yield and associated pest species. Can. J. Plant Sci. 95:9–20.CrossRefGoogle Scholar
  19. Irvine, R.B., Lafond, G.P., May, W., Kutcher, H.R., Clayton, G.W., Harker, K.N., Turkington, T.K., Beres, B.L. 2013. Stubble options for winter wheat in the black soil zone of western Canada. Can. J. Plant Sci. 93:261–270.CrossRefGoogle Scholar
  20. Karp, A., Richter, G.M. 2011. Meeting the challenge of food and energy security. J. Exp. Bot. 62:3263–3271.CrossRefGoogle Scholar
  21. Kirschenmann, F. 2002. Why American agriculture is not sustainable. Renewable Resour. J. 20:7–11.Google Scholar
  22. Littell, R.C., Milliken, G.A., Stroup, W.W., Wolfinger, R.D. 2006. SAS® system for mixed models. SAS Institute Inc., New York.Google Scholar
  23. Lupwayi, N.Z., Rice, W.A., Clayton, G.W. 1998. Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biol. Biochem. 30:1733–1741.CrossRefGoogle Scholar
  24. McLeod, J.G., Pfeiffer, W.H., DePauw, R.M., Clarke, J.M. 2001. Registration of AC Ultima spring triticale. Crop Sci. 41:924–925.CrossRefGoogle Scholar
  25. Pakrou, N., Dillon, P. 2000. Key processes of the nitrogen cycle in an irrigated and a non-irrigated grazed pasture. Plant Soil 224:231–250.CrossRefGoogle Scholar
  26. Peoples, M.B., Herridge, D.F., Ladha, J.K. 1995. Biological nitrogen fixation: An efficient source of nitrogen for sustainable agricultural production? Plant Soil 174:3–28.CrossRefGoogle Scholar
  27. Raimbault, B.A., Vyn, T.J. 1991. Crop rotation and tillage effects on corn growth and soil structural stability. Agron. J. 83:979–985.CrossRefGoogle Scholar
  28. Randhawa, H.S., Sadasivaiah, R.S., Graf, R.J., Beres, B.L. 2012. Bhishaj soft white spring wheat. Can. J. Plant Sci. 91:805–810.CrossRefGoogle Scholar
  29. Ryan, M.H., Norton, R.M., Kirkegaard, J.A., McCormick, K.M., Knights, S.E., Angus, J.F. 2002. Increasing mycorrhizal colonisation does not improve growth and nutrition of wheat on Vertosols in south-eastern Australia. Aust. J. Agric. Res. 53:1173–1181.CrossRefGoogle Scholar
  30. Smith, C., Bond, W., Verburg, K., Dunin, F. 2000. Water use of cereal-canola-lucerne rotations in southeastern Australia, nuclear techniques in integrated plant nutrient, water and soil management. International Atomic Energy Agency, Vienna, Austria, pp. 178–184.Google Scholar
  31. Sumner, D.R., Doupnik, B., Boosalis, M.G. 1981. Effects of reduced tillage and multiple cropping on plant diseases. Annu. Rev. Phytopathol. 19:67–187.CrossRefGoogle Scholar
  32. Van Eerd, L.L., Katelyn, A.C., Adam, H., Anne, V., David, C.H. 2014. Long-term tillage and crop rotation effects on soil quality, organic carbon, and total nitrogen. Can. J. Plant Sci. 94:303–315.CrossRefGoogle Scholar
  33. Varvel, G.E. 2000. Crop rotation and nitrogen effects on normalized grain yields in a long-term study. Agron. J. 92:938–941.CrossRefGoogle Scholar
  34. Warkentin, T., Vandenberg, A., Banniza, S., Slinkard, A. 2004. CDC Golden field pea. Can. J. Plant Sci. 84:237–238.CrossRefGoogle Scholar
  35. Warkentin, T., Vandenberg, A., Tar’an, B., Barlow, S., Ife, S. 2007. CDC Meadow field pea. Can. J. Plant Sci. 87:909–910.CrossRefGoogle Scholar
  36. Williams, C.M., King, J.R., Ross, S.M., Olson, M.A., Hoy, C.F., Lopetinsky, K.J. 2014. Effects of three pulse crops on subsequent barley, canola, and wheat. Agron. J. 106:343–350.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2018

Authors and Affiliations

  • B. L. Béres
    • 1
    Email author
  • N. Z. Lupwayi
    • 1
  • F. J. Larney
    • 1
  • B. Ellert
    • 1
  • E. G. Smith
    • 1
  • T. K. Turkington
    • 2
  • D. Pageau
    • 3
  • K. Semagn
    • 4
  • Z. Wang
    • 1
  1. 1.Agriculture and Agri-Food CanadaLethbridge Research CentreLethbridgeCanada
  2. 2.Alberta Agriculture, Field Crop Development CentreLacombeCanada
  3. 3.Agriculture and Agri-Food Canada, Research FarmNormandinCanada
  4. 4.University of Alberta, Department of Agricultural, Food and Nutritional ScienceEdmontonCanada

Personalised recommendations