Rotational Diversity Effects in a Triticale-based Cropping System

Abstract

Research indicates that not all crops respond similarly to cropping diversity and the response of triticale (× Triticosecale ssp.) has not been documented. We investigated the effects of rotational diversity on cereals in cropping sequences with canola (Brassica napus L.), field pea (Pisum sativum L.), or an intercrop (triticale:field pea). Six crop rotations were established consisting of two, 2-yr low diversity rotations (LDR) (continuous triticale (T-T_LDR) and triticale-wheat (Triticum aestivum L.) (T-W_LDR)); three, 2-yr moderate diversity rotations (MDR) (triticale-field pea (T-P_MDR), triticale-canola (T-C_MDR), and a triticale: field pea intercrop (T- in P_MDR)); and one, 3-yr high diversity rotation (HDR) (canola-triticale-field pea (C-T-P_HDR)). The study was established in Lethbridge, Alberta (irrigated and rainfed); Swift Current (rainfed) and Canora (rainfed), Saskatchewan, Canada; and carried out from 2008 to 2014. Triticale grain yield for the 3-yr HDR was superior over the LDR rotations and the MDR triticale-field pea system; however, results were similar for triticale-canola, and removal of canola from the system caused a yield drag in triticale. Triticale biomass was superior for the 3-yr HDR. Moreover, along with improved triticale grain yield, the 3-yr HDR provided greater yield stability across environments. High rotational diversity (C-T-P_HDR) resulted in the highest soil microbial community and soil carbon concentration, whereas continuous triticale provided the lowest. Net economic returns were also superior for C-T-P_HDR ($670 ha–1) and the lowest for T-W_LDR ($458 ha–1). Overall, triticale responded positively to increased rotational diversity and displayed greater stability with the inclusion of field pea, leading to improved profitability and sustainability of the system.

References

  1. Andow, D. 1983. The extent of monoculture and its effects on insect pest populations with particular reference to wheat and cotton. Agr. Ecosyst. Environ. 9:25–35.

    Article  Google Scholar 

  2. Angus, J.F., Herwaarden, A.F.V., Howe, G.N. 1991. Productivity and break crop effects of winter-growing oilseeds. Aust. J. Exp. Agric. 31:669–677.

    Article  Google Scholar 

  3. Anonymous. 2015. Crop planning guide 2015 Government of Saskatchewan, Regina, SK, p. 16.

  4. Beres, B., Pozniak, C., Bressler, D., Gibreel, A., Eudes, F., Graf, R., Randhawa, H., Salmon, D., McLeod, G., Dion, Y., Irvine, B., Voldeng, H., Martin, R., Pageau, D., Comeau, A., DePauw, R., Phelps, S., Spaner, D., 2013a. A Canadian ethanol feedstock study to benchmark the relative performance of triticale: II. Grain quality and ethanol production. Agron. J. 105:1707–1720.

    CAS  Google Scholar 

  5. Beres, B., Pozniak, C., Eudes, F., Graf, R., Randhawa, H., Salmon, D., McLeod, G., Dion, Y., Irvine, B., Voldeng, H., Martin, R., Pageau, D., Comeau, A., DePauw, R., Phelps, S., Spaner, D. 2013b. A Canadian ethanol feedstock study to benchmark the relative performance of triticale: I. Agronomics. Agron. J. 105:1695–1706.

    CAS  Article  Google Scholar 

  6. Beres, B.L., Harker, K.N., Clayton, G.W., Blackshaw, R.E., Graf, R.J. 2010. Weed competitive ability of spring and winter cereals in the Northern Great Plains. Weed Technol. 24:108–116.

    CAS  Article  Google Scholar 

  7. Blackshaw, R.E., Larney, F.J., Lindwall, C.W., Watson, P.R., Derksen, D.A. 2001. Tillage intensity and crop rotation affect weed community dynamics in a winter wheat cropping system. Can. J. Plant Sci. 81:805–813.

    Article  Google Scholar 

  8. Cook, A., Wilhelm, N. Vvsr, G. Frischke, A. 2012. The impact of crop rotation and nutrition on Rhizoctonia disease incidence in cereals on grey calcareous soils of upper Eyre Peninsula, in: Yunusa., I. (ed.), Capturing Opportunities and Overcoming Obstacles in Australian Agronomy. Proceedings of 16th Australian Agronomy Conference. Armidale, NSW, pp. 14–18.

    Google Scholar 

  9. Cutforth, H.W., Angadi, S.V., McConkey, B.G., Miller, P.R., Ulrich, D., Gulden, R., Volkmar, K.M., Entz, M.H., Brandt, S.A. 2013. Comparing rooting characteristics and soil water withdrawal patterns of wheat with alternative oilseed and pulse crops grown in the semiarid Canadian prairie. Can. J. Soil Sci. 93:147–160.

    Article  Google Scholar 

  10. Davis, A.S., Hill, J.D., Chase, C.A., Johanns, A.M., Liebman, M. 2012. Increasing cropping system diversity balances productivity, profitability and environmental health. PLoS ONE 7, e47149.

    CAS  Article  Google Scholar 

  11. Debaeke, P., Hilaire, A. 1997. Production of rainfed and irrigated crops under different crop rotations and input levels in southwestern France. Can. J. Plant Sci. 77:539–548.

    Article  Google Scholar 

  12. Doran, J.W. 2002. Soil health and global sustainability: translating science into practice. Agric. Ecosyst. Environ. 88:119–127.

    Article  Google Scholar 

  13. Francis, T.R., Kannenberg, L.W. 1978. Yield stability studies in short-season maize. I. A descriptive method for grouping genotypes. Can. J. Plant Sci. 58:1029–1034.

    Article  Google Scholar 

  14. Gan, Y., Hamel, C., O’Donovan, J.T., Cutforth, H., Zentner, R.P., Campbell, C.A., Niu, Y., Poppy, L. 2015. Diversifying crop rotations with pulses enhances system productivity. Sci. Rep. 5:14625.

    CAS  Article  Google Scholar 

  15. Gaudin, A.C.M., Tolhurst, T.N., Ker, A.P., Janovicek, K., Tortora, C., Martin, R.C., Deen, W. 2015. Increasing crop diversity mitigates weather variations and improves yield stability. PLoS ONE 10, e0113261.

    Article  Google Scholar 

  16. Głąb, T., Ścigalska, B., Łabuz, B. 2014. Effect of crop rotation on the root system morphology and productivity of triticale (×Triticosecale Wittm). J. Agric. Sci. 152:642–654.

    Article  Google Scholar 

  17. Griffith, D.R., West, T.D., Parsons, S.D., Kladivko, E.J., Mannering, J.V. 1988. Long-term tillage and rotation effects on corn growth and yield on high and low organic matter, poorly drained soils. Agron. J. 80:599–605.

    Article  Google Scholar 

  18. Harker, K.N., O’Donovan, J.T., Turkington, T.K., Blackshaw, R.E., Lupwayi, N.Z., Smith, E.G., Johnson, E.N., Gan, Y., Kutcher, H.R., Dosdall, L.M., Peng, G. 2015. Canola rotation frequency impacts canola yield and associated pest species. Can. J. Plant Sci. 95:9–20.

    Article  Google Scholar 

  19. Irvine, R.B., Lafond, G.P., May, W., Kutcher, H.R., Clayton, G.W., Harker, K.N., Turkington, T.K., Beres, B.L. 2013. Stubble options for winter wheat in the black soil zone of western Canada. Can. J. Plant Sci. 93:261–270.

    Article  Google Scholar 

  20. Karp, A., Richter, G.M. 2011. Meeting the challenge of food and energy security. J. Exp. Bot. 62:3263–3271.

    CAS  Article  Google Scholar 

  21. Kirschenmann, F. 2002. Why American agriculture is not sustainable. Renewable Resour. J. 20:7–11.

    Google Scholar 

  22. Littell, R.C., Milliken, G.A., Stroup, W.W., Wolfinger, R.D. 2006. SAS® system for mixed models. SAS Institute Inc., New York.

    Google Scholar 

  23. Lupwayi, N.Z., Rice, W.A., Clayton, G.W. 1998. Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biol. Biochem. 30:1733–1741.

    CAS  Article  Google Scholar 

  24. McLeod, J.G., Pfeiffer, W.H., DePauw, R.M., Clarke, J.M. 2001. Registration of AC Ultima spring triticale. Crop Sci. 41:924–925.

    Article  Google Scholar 

  25. Pakrou, N., Dillon, P. 2000. Key processes of the nitrogen cycle in an irrigated and a non-irrigated grazed pasture. Plant Soil 224:231–250.

    CAS  Article  Google Scholar 

  26. Peoples, M.B., Herridge, D.F., Ladha, J.K. 1995. Biological nitrogen fixation: An efficient source of nitrogen for sustainable agricultural production? Plant Soil 174:3–28.

    CAS  Article  Google Scholar 

  27. Raimbault, B.A., Vyn, T.J. 1991. Crop rotation and tillage effects on corn growth and soil structural stability. Agron. J. 83:979–985.

    Article  Google Scholar 

  28. Randhawa, H.S., Sadasivaiah, R.S., Graf, R.J., Beres, B.L. 2012. Bhishaj soft white spring wheat. Can. J. Plant Sci. 91:805–810.

    Article  Google Scholar 

  29. Ryan, M.H., Norton, R.M., Kirkegaard, J.A., McCormick, K.M., Knights, S.E., Angus, J.F. 2002. Increasing mycorrhizal colonisation does not improve growth and nutrition of wheat on Vertosols in south-eastern Australia. Aust. J. Agric. Res. 53:1173–1181.

    CAS  Article  Google Scholar 

  30. Smith, C., Bond, W., Verburg, K., Dunin, F. 2000. Water use of cereal-canola-lucerne rotations in southeastern Australia, nuclear techniques in integrated plant nutrient, water and soil management. International Atomic Energy Agency, Vienna, Austria, pp. 178–184.

    Google Scholar 

  31. Sumner, D.R., Doupnik, B., Boosalis, M.G. 1981. Effects of reduced tillage and multiple cropping on plant diseases. Annu. Rev. Phytopathol. 19:67–187.

    Article  Google Scholar 

  32. Van Eerd, L.L., Katelyn, A.C., Adam, H., Anne, V., David, C.H. 2014. Long-term tillage and crop rotation effects on soil quality, organic carbon, and total nitrogen. Can. J. Plant Sci. 94:303–315.

    Article  Google Scholar 

  33. Varvel, G.E. 2000. Crop rotation and nitrogen effects on normalized grain yields in a long-term study. Agron. J. 92:938–941.

    Article  Google Scholar 

  34. Warkentin, T., Vandenberg, A., Banniza, S., Slinkard, A. 2004. CDC Golden field pea. Can. J. Plant Sci. 84:237–238.

    Article  Google Scholar 

  35. Warkentin, T., Vandenberg, A., Tar’an, B., Barlow, S., Ife, S. 2007. CDC Meadow field pea. Can. J. Plant Sci. 87:909–910.

    Article  Google Scholar 

  36. Williams, C.M., King, J.R., Ross, S.M., Olson, M.A., Hoy, C.F., Lopetinsky, K.J. 2014. Effects of three pulse crops on subsequent barley, canola, and wheat. Agron. J. 106:343–350.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. L. Béres.

Additional information

Communicated by L. Bona

This article was presented on the 9th International Triticale Symposium, May 23–27, 2016, in Szeged, Hungary

Electronic supplementary material

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Béres, B.L., Lupwayi, N.Z., Larney, F.J. et al. Rotational Diversity Effects in a Triticale-based Cropping System. CEREAL RESEARCH COMMUNICATIONS 46, 717–728 (2018). https://doi.org/10.1556/0806.46.2018.051

Download citation

Keywords

  • rotational diversity
  • triticale
  • pulses
  • canola
  • bioethanol production
  • grain yield
  • net economic returns