Genetic Diversity of Maize Genotypes with Variable Resistance to Striga asiatica Based on SSR Markers

Abstract

Genetic diversity among breeding populations is key in plant breeding programs. This study aimed to determine the extent of genetic diversity among 37 diverse maize genotypes using simple sequence repeat (SSR) markers. The maize genotypes were selected based on their variable resistance to Striga asiatica. Maize genotypes were fingerprinted using 18 polymorphic SSR markers. Marker and population diversity parameters were computed. A total of 191 alleles were detected and the number of effective alleles varied from 2 to 21 per locus with a mean of 11. The polymorphic information content (PIC) of the SSR markers varied from 0.59 to 0.96, with a mean of 0.80. Significant differences were observed among populations, individuals and within individuals. Within and among individual variances accounted for 85% and 13% of the total gene diversity. The genotypes were grouped into three main genetic clusters, which were not influenced by genotype origin. Mean genetic distance (0.43) and low geneflow (0.18) were observed among the populations. High mean genetic identity (0.65) was recorded, indicating potential genetic ‘bottleneck’ among the selected germplasm. The following open pollinated varieties; Border King, Colorado, CIMMYT’s ZM OPVs, Mac Pearl, Shesha, Nel Choice, Natal 8Lines, Nel Choice QPM, Hickory King, Kep Select, Obatanpa and the Striga resistant synthetic variety DSTRYSYN15 were selected from different clusters for breeding.

References

  1. Aci, M.M., Revilla, P., Morsli, A., Djemel, A., Belalia, N., Kadri, Y., Khelifi-Saloui, M., Ordás, B., Khelifi, L. 2013. Genetic diversity in Algerian maize (Zea mays L.) landraces using SSR markers. Maydica 58:304–310.

    Google Scholar 

  2. Akinwale, R., Badu-Apraku, B., Fakorede, M., Vroh-Bi, I. 2014. Heterotic grouping of tropical early-maturing maize inbred lines based on combining ability in Striga-infested and Striga-free environments and the use of SSR markers for genotyping. Field Crop. Res. 156:48–62.

    Article  Google Scholar 

  3. Amusan, I.O., Rich, P.J., Menkir, A., Housley, T., Ejeta, G. 2008. Resistance to Striga hermonthica in a maize inbred line derived from Zea diploperennis. New Phytol. 178:157–166.

    Article  Google Scholar 

  4. Andorf, C.M., Cannon, E.K., Portwood, J.L., Gardiner, J.M., Harper, L.C., Schaeffer, M.L., Braun, B.L., Campbell, D.A., Vinnakota, A.G., Sribalusu, V.V. 2015. MaizeGDB update: new tools, data and interface for the maize model organism database. Nucleic Acids Res. 44:D1195–D1201.

    Article  Google Scholar 

  5. Bantte, K., Prasanna, B. 2003. Simple sequence repeat polymorphism in Quality Protein Maize (QPM) lines. Euphytica 129:337–344.

    CAS  Article  Google Scholar 

  6. Barcaccia, G., Lucchin, M., Parrini, P. 2003. Characterization of a flint maize (Zea mays var. indurata) Italian landrace, II. Genetic diversity and relatedness assessed by SSR and Inter-SSR molecular markers. Genet. Resour. Crop Ev. 50:253–271.

    CAS  Article  Google Scholar 

  7. CIMMYT. 2005. Laboratory Protocols: CIMMYT Applied Molecular Genetics Laboratory Mexico, D.F.: CIMMYT.

  8. Ejeta, G. 2005. Integrating biotechnology, breeding, and agronomy in the control of the parasitic weed Striga spp in sorghum. In the Wake of the Double Helix: From the Green Revolution to the Gene Revolution Tuberosa, R., Phillips, R.L., Gale. M. (eds) Bologna, Italy. pp. 239–251.

    Google Scholar 

  9. Enoki, H., Sato, H., Koinuma, K. 2002. SSR analysis of genetic diversity among maize inbred lines adapted to cold regions of Japan. Theor. Appl. Genet. 104:1270–1277.

    CAS  Article  Google Scholar 

  10. Gonzaga, Z.J., Aslam, K., Septiningsih, E.M., Collard, B.C. 2015. Evaluation of SSR and SNP markers for molecular breeding in rice. Plant breeding and biotechnology 3:139–152.

    Article  Google Scholar 

  11. Govindaraj, M., Vetriventhan, M., Srinivasan, M. 2015. Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genetics research international 2015.

  12. Haussmann, B., Hess, D., Reddy, B., Mukuru, S., Kayentao, M., Welz, H., Geiger, H. 2001. Pattern analysis of genotype× environment interaction for striga resistance and grain yield in African sorghum trials. Euphytica 122:297–308.

    Article  Google Scholar 

  13. Karaya, H., Njoroge, K., Mugo, S., Ariga, E., Kanampiu, F., Nderitu, J. 2012. Determination of levels of Striga germination stimulants for maize gene bank accessions and elite inbred lines. International Journal of Plant Production. 6:209–224.

    Google Scholar 

  14. Kashiani, P., Saleh, G., Panandam, J.M., Abdullah, N.A.P., Selamat, A. 2012. Molecular characterization of tropical sweet corn inbred lines using microsatellite markers. Maydica 57:154–163.

    Google Scholar 

  15. Menkir, A., Badu-Apraku, B., Yallou, C.G., Kamara, A.Y., Ejeta, G. 2007. Breeding maize for broad-based resistance to Striga hermonthica Singapore: World Scientific Publishing.

  16. Mohamed, A.H., Housley, T., Ejeta, G. 2010. An in vitro technique for studying specific Striga resistance mechanisms in sorghum. Afr. J. Agr. Res. 5:1868–1875.

    Google Scholar 

  17. Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Noldin Almiron, O.J. 2008. Análisis multivariante de la colección nuclear de la raza Avati Morotî de Paraguay. DEA en agronomía Universidad de Vigo, España.

  19. Nyaligwa, L., Hussein, S., Amelework, B., Ghebrehiwot, H. 2015. Genetic diversity analysis of elite maize inbred lines of diverse sources using SSR markers. Maydica 60:M29.

    Google Scholar 

  20. Patto, M.V., Satovic, Z., Pego, S., Fevereiro, P. 2004. Assessing the genetic diversity of Portuguese maize germplasm using microsatellite markers. Euphytica 137:63–72.

    CAS  Article  Google Scholar 

  21. Peakall, P., Smouse, R. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research–an update. Bioinformatics 28:2537–2539.

    CAS  Article  Google Scholar 

  22. Perrier, X., Jacquemoud-Collet, J.P. 2006. DARwin software. http://www.darwin.cirad.frdarwin.html. Accessed 8 March 2018.

  23. Porebski, S., Bailey, L.G., Baum, B.R. 1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Rep. 15:8–15.

    CAS  Article  Google Scholar 

  24. Prasanna, B., Babu, R., Nair, S., Semagn, K., Chaikam, V., Cairns, J., Zhang, X., Xu, Y., Olsen, M. 2014. Molecular marker-assisted breeding for tropical maize improvement. Genetics, genomics and breeding of maize CRC Press. United Kingdom, London. pp. 89–119.

    Google Scholar 

  25. Ranum, P., Peña-Rosas, J.P., Garcia-Casal, M.N. 2014. Global maize production, utilization, and consumption. Ann. NY. Acad. Sci. 1312:105–112.

    Article  Google Scholar 

  26. Shayanowako, A.T., Laing, M., Shimelis, H., Mwadzingeni, L. 2017. Resistance breeding and biocontrol of Striga asiatica (L.) Kuntze in maize: a review. Acta. Agric. Scand. Sect. B. Soil Plant Sci. 67:1–11.

    Google Scholar 

  27. Smith, J., Chin, E., Shu, H., Smith, O., Wall, S., Senior, M., Mitchell, S., Kresovich, S., Ziegle, J. 1997. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPs and pedigree. Theor. Appl. Genet. 95:163–173.

    CAS  Article  Google Scholar 

  28. Warburton, M., Reif, J., Frisch, M., Bohn, M., Bedoya, C., Xia, X., Crossa, J., Franco, J., Hoisington, D., Pixley, K. 2008. Genetic diversity in CIMMYT nontemperate maize germplasm: landraces, open pollinated varieties, and inbred lines. Crop Sci. 48:617–624.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. I. T. Shayanowako.

Additional information

Communicated by S. Gottwald

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shayanowako, A.I.T., Shimelis, H., Laing, M.D. et al. Genetic Diversity of Maize Genotypes with Variable Resistance to Striga asiatica Based on SSR Markers. CEREAL RESEARCH COMMUNICATIONS 46, 668–678 (2018). https://doi.org/10.1556/0806.46.2018.044

Download citation

Keywords

  • FOS
  • genetic variation
  • microsatellites
  • southern Africa
  • Striga
  • Zea mays