Advertisement

Cereal Research Communications

, Volume 46, Issue 4, pp 604–615 | Cite as

Transfer of Recessive skr Crossability Trait into Well-adapted French Wheat Cultivar Barok through Marker-assisted Backcrossing Method

  • A. BouguennecEmail author
  • V. S. Lesage
  • I. Gateau
  • P. Sourdile
  • J. Jahier
  • P. Lonnet
Article

Abstract

In order to increase genetic diversity in cereals, interspecific or even intergeneric crosses are worthwhile, especially wheat by rye crosses for triticale production. However, these crosses often fail due to inhibiting genes. To overcome this obstacle, crossability trait, present in a few wheat cultivars, can be transferred into other wheat lines of agronomical interest. Nevertheless, this transfer remains tedious through conventional backcrossing methods because it is a recessive trait, which requires selfing generations and complex evaluation by many crosses. Here, we present a marker-assisted backcrossing method to transfer this trait more quickly and easily. We chose to introduce the recessive crossability skr, located on chromosome 5BS and originating from Asian wheat, into Barok, a non-crossable French wheat cultivar, with good agronomic characteristics. Six molecular markers, close to the Skr locus, were used to check the transfer of the gene at each of the three backcrosses, without selfing generation nor crosses with rye. Finally, we crossed the predicted crossable lines with rye to validate their crossability. We obtained sixteen lines, morphologically similar to Barok, exhibiting high crossability rate (30%). The markers were thus efficient to transfer the skr crossability but they remain too far from the Skr locus to be considered as diagnostic markers. Indeed, genotyping and phenotyping on other wheat cultivars showed some discrepancies. Nevertheless, this opens the way to enhance genetic diversity more easily and to improve traits of agronomic interest in triticale or wheat as well as to study further barriers to intergeneric crosses.

Keywords

genetic diversity intergeneric cross crossability gene molecular markers triticale 

Abbreviations:

cv

cultivar

BC

Back-Cross

ISBP

Insertion site-based polymorphism

SSR

Simple Sequence Repeat

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfares, W., Bouguennec, A., Balfourier, F., Gay, G., Berges, H., Vautrin, S., Sourdille, P., Bernard, M., Feuillet, C. 2009. Fine mapping and marker development for the crossability gene Skr on chromosome 5BS of hexaploid wheat (Triticum aestivum L.). Genetics 183(2):469–481.CrossRefGoogle Scholar
  2. Backhouse, W.O. 1916. A note on the inheritance of crossability. J. Genet. 6(2):91–94.CrossRefGoogle Scholar
  3. Cubero, J.I., Martín, A., Millán, T., Gómez-Cabrera, A., de Haro, A. 1986. Tritordeum – a new alloploid of potential importance as a protein source crop. Crop Science 26(6):1186–1190.CrossRefGoogle Scholar
  4. Feldman, M. 2001. In The World Wheat Book. A history of wheat breeding (In: eds Bonjean A.P. & Angus W.J.) pp. 3–56 (Tec. & Doc. Editions, London).Google Scholar
  5. Friebe B., Jiang J., Raupp W.J., McIntosh, R.A., Gill, B.S. 1996. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87.CrossRefGoogle Scholar
  6. Gay, G., Bernard, M. 1994. Production of intervarietal substitution lines with improved interspecific crossability in the wheat cv Courtot. Agronomie 14:27–32.CrossRefGoogle Scholar
  7. Ginkel, M. van, Ogbonnaya, F. 2007. Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions. Field Crops Research 104(1/3):86–94CrossRefGoogle Scholar
  8. Jiang, J.M., Friebe, B., Gill, B.S. 1994. Recent advances in alien gene-transfer in wheat. Euphytica 73:199–212.CrossRefGoogle Scholar
  9. Krolow, K.D. 1970. Untersuchtungen über die Kreuzbarkeit zwischen Weizen und Roggen. (Investigations on compatibility between. wheat and rye). Z. Planzenzüchtg. 64:44–72.Google Scholar
  10. Lamoureux, D., Boeuf, C., Regad, F., Garsmeur, O., Charmet, G., Sourdille, P., Lagoda, P., Bernard, M. 2002. Comparative mapping of the wheat 5B short chromosome arm distal region with rice, relative to a crossability locus. Theor. Appl. Genet. 105:759–765.CrossRefGoogle Scholar
  11. Lange, W., Riley, R. 1973. Position on chromosome 5B of wheat of locus determining crossability with rye. Gentical Research 22(2):143–153.CrossRefGoogle Scholar
  12. Lein, A. 1943. Die genetische Grundlage der Kreuzbarkeit zwischen Weizen und Roggen. (The genetical basis of the crossability between wheat and rye). Z. Indukt. Abstamm. Vererb. Lehre 81:28–59.Google Scholar
  13. Molnár-Láng, M., Linc, G., Sutka, J., 1996. Transfer of the recessive crossability allele kr1 from Chinese Spring into the winter wheat variety Martonvásári 9. Euphytica 90: 301–305.CrossRefGoogle Scholar
  14. Oettler, G. 1982. Effect of parental genotype on crossability and response to colchicine treatment in wheat-rye hybrids. Z. Planzenzüchtg. 88(4):322–330.Google Scholar
  15. Oettler, G. 2005. The fortune of a botanical curiosity – Triticale: past, present and future. J. Agric. Sci. 143:329–346.CrossRefGoogle Scholar
  16. Paux, E., Faure, S., Choulet, F., Roger, D., Gauthier, V., Martinant, J.-P., Sourdille, P., Balfourier, F., Le Paslier, M.-C., Chauveau, A., Cakir, M., Gandon, B., Feuillet, C. 2010. Insertion site-based polymorphism markers open new perspectives for genome saturation and marker-assisted selection in wheat. Plant Biotechnology Journal, 8: 196–210.Google Scholar
  17. Schneider, A., Molnar, I., Molnar-Lang, M. 2008. Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica 163:1–19.CrossRefGoogle Scholar
  18. Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.H., Leroy, P., Ganal, M.W. 1998. A microsatellite map of wheat. Genetics 149(4):2007–2023PubMedPubMedCentralGoogle Scholar
  19. Schneider, A., Molnar, I., Molnar-Lang, M. 2008. Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica 163:1–19.CrossRefGoogle Scholar
  20. Shepherd, K.W., Islam, A.K.M.R. 1988. Fourth compendium of wheat-alien chromosome lines. pp. 1373–1395. In: T.E. Miller & R.M.D. Koebner (Eds). Proc. 7th Int. Wheat Genet. Symp., Cambridge, England.Google Scholar
  21. Sitch, L.A., Snape, J.W., Firman, S.J. 1985. Intrachromosomal mapping of crossability genes in wheat (Triticum aestivum). Theor. Appl. Genet. 70:309–314.CrossRefGoogle Scholar
  22. Taira, T., Lelley, T., Larter, E.N. 1978. Influence of parental rye on development of embryos and endosperm of wheat-rye hybrids. Can. J. of Botany 56(4):386–390.CrossRefGoogle Scholar
  23. Tixier, M.H., Sourdille, P., Charmet, G., Gay, G., Jaby, C., Cadalen, T., Bernard, S., Nicolas, P., Bernard, M. 1998. Detection of QTLs for crossability in wheat using a doubled haploid population. Theor. Appl. Genet. 97:1076–1082.CrossRefGoogle Scholar
  24. Zeller, F.J., Hsam, S.L.K. 1984. Broadening the genetic variability of cultivated wheat by utilizing rye chromatin. In S. Sakamoto (ed.), Proc. 6th Int. Wheat Genet. Symp., Kyoto, Japan, 28 Nov.–3 Dec. 1983. Plant Germplasm Int., Kyoto University, Kyoto, Japan. pp. 161–173.Google Scholar
  25. Zeven, A.C. 1987. Crossability percentages of some 1400 bread wheat varieties and lines with rye. Euphytica 36:299–319.CrossRefGoogle Scholar
  26. Zheng, Y.L., Luo, M.C., Yen, C., Yang, J.L. 1992. Chromosome location of a new crossability gene in common wheat. Wheat Inf. Service 75:36–40.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2018

Authors and Affiliations

  • A. Bouguennec
    • 1
    Email author
  • V. S. Lesage
    • 2
  • I. Gateau
    • 1
  • P. Sourdile
    • 1
  • J. Jahier
    • 2
  • P. Lonnet
    • 3
  1. 1.INRA-UCA GDECClermont-FerrandFrance
  2. 2.INRA IGEPPLe Rheu CedexFrance
  3. 3.GIE TRITICALEParis cedex 01France

Personalised recommendations