Cereal Research Communications

, Volume 46, Issue 4, pp 739–750 | Cite as

Nutrient Use Efficiency and Nutrient Uptake Promoting of Rice by Potassium Solubilizing Bacteria (KSB

  • M. Yaghoubi KhanghahiEmail author
  • H. Pirdashti
  • H. Rahimian
  • G. A. Nematzadeh
  • M. Ghajar Sepanlou


The current study was carried out in both pot and field conditions to investigate the effects of three KSB strains of Pantoea agglomerans, Rahnella aquatilis and Pseudomonas orientalis on nitrogen (N), phosphorous (P) and potassium (K) uptake, nutrient use efficiency parameters and nutrients remobilization in rice (Oryza sativa L. cv. Pajohesh). The experiments included 15 treatments of KSB inoculations, commercial K biofertilizer and K chemical fertilizer. The results showed that the inoculums of all three KSB strains increased the K, N and P uptake by grain and straw, especially when applied in combination with 1/2 K chemical fertilizer (47.5 Kg/ha) as compared to the control treatment. The highest value of available K in the soil obtained from NPK chemical fertilizer equal to 140.1 and 134.6 mg K per kg of soil in the pot and field experiments, respectively, which were significantly higher than KSB inoculations treatments. Bacterial inoculums coupled with 1/2 K chemical fertilizer also enhanced the nutrient use efficiency (including agronomic efficiency (AE), apparent recovery efficiency (ARE), physiological efficiency (PE), agro-physiological efficiency (APE), internal utilization efficiency (UE), partial factor productivity (PFP), partial nutrient balance (PNB)) and nutrient remobilization. The results indicated that the bioinoculation with these KSB strains isolated from soil paddy could be considered as an effective way to increase potassium, nitrogen and phosphorus uptake by rice plant and enhance their use efficiency and remobilization to grains in the flooding irrigation conditions.


nutrient remobilization nutrient use efficiency nutrient uptake potassium solubilizing bacteria 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2018_4604739_MOESM1_ESM.pdf (213 kb)
Nutrient Use Efficiency and Nutrient Uptake Promoting of Rice by Potassium Solubilizing Bacteria (KSB)


  1. Abou-el-Seoud, I.I., Abdel-Megeed, A. 2012. Impact of rock materials and biofer- tilizations on P and K availability for maize (Zea mayz L.) under calcareous soil conditions. Saudi J. Biol. Sci. 19:55–63.CrossRefGoogle Scholar
  2. Agrawal, T., Kotasthane, A.S., Kosharia, A., Kushwah, R., Zaidi, N.W., Singh, U. 2017. Crop-specific plant growth promoting effects of ACCd enzyme and siderophore producing and cynogenic fluorescent Pseudomonas. 3 Biotech. 7:1–11.Google Scholar
  3. Ahemad, M., Kibret, M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria. JKSUS. 26(1):1–20.Google Scholar
  4. Bahadur, I., Meena, V.S., Kumar, S. 2014. Importance and application of potassic biofertilizer in Indian agriculture. Int. Res. J. Boil. 3(12):80–85.Google Scholar
  5. Bahadur, I., Maurya, B.R., Kumar, A., Meena, V.S., Raghuwanshi, R. 2016. Towards the Soil Sustainability and Potassium-Solubilizing Microorganisms. In: Meena, V., Maurya, B., Verma, J., Meena, R. (eds) Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer, New Delhi.Google Scholar
  6. Bakhshandeh, E., Soltani, A., Zeinali, E., Ghadiryan, R. 2013. Study of dry matter and nitrogen accumulation, remobilization and harvest index in bread and durum wheat cultivars. Electron. J. Crop Prod. 6(1):49–69. (In Persian with English abstract)Google Scholar
  7. Bakhshandeh, E., Rahimian, H., Pirdashti, H., Nematzadeh, G.A. 2015. Evaluation of phosphate-solubilizing bacteria on the growth and grain yield of rice (Oryza sativa L.) cropped in northern Iran. J. Appl. Microbiol. 119:1371–1382.CrossRefGoogle Scholar
  8. Bakhshandeh, E., Pirdashti, H., Shahsavarpour Lendeh, K. 2017a. Phosphate and potassium-solubilizing bacteria effect on the growth of rice. Ecol. Eng. 103:164–169.CrossRefGoogle Scholar
  9. Bakhshandeh, E., Pirdashti, H., Gilani, Z. 2017b. Application of mathematical models to describe rice growth and nutrients uptake in the presence of plant growth promoting microorganisms. Appl. Soil. Ecol.
  10. Balasubramaniam, P., Subramanian, S. 2006. Assessment of soil test based potassium requirement for low land rice in udic haplustalf under the influence of silicon fertilization, Tamil Nadu Agric., Kumulur, Truchirapalli. pp. 621–712.Google Scholar
  11. Bartels, J.M., Bigham, J.M. 1996. Method of soil analysis. Part 3. Chemical methods. SSSA. Medison, WI. USA.Google Scholar
  12. Batten, G.D. 2002. Relating minerals in rice shoots and grain to soil tests, yield and grain quality. A report for the Rural Industries Research and Development Corporation. RIRDC Publication No 02/101.Google Scholar
  13. Bergottini, V.M., Otegui, M.B., Sosa, A., Zapata, P.D., Mulot, M., Rebord, M., Zopfi, J., Wiss, F., Benrey, B., Junier, P. 2015. Bio-inoculation of yerba mate seedlings (Ilex paraguariensis) with native plant growth-promoting rhizobacteria: a sustainable alternative to improve crop yield. Biol. Fertil. Soils. 51(6):749–755.CrossRefGoogle Scholar
  14. Carmeis Filho, A.C.A., Crusciol, C.A.C., Nascente, A.S., Mauad, M., Garcia, R.A. 2017. Influence of potassium levels on root growth and nutrient uptake of upland rice cultivars. Rev. Caatinga. 30(1):32–44.CrossRefGoogle Scholar
  15. Chandra, K., Ingle, S.R., Bihari, K. 2002. Biofertilizers and its impact on different crops. National Seminar on Biotechnology: Microbes to Man. March 30–31. School of Life Science, Utkal University, Bhubaneswar, Orissa, India. pp. 18–19.Google Scholar
  16. Chattopadhyay, K., Kuanar, S.R., Ray, A., Sarkar, R.K. 2017. Physiological basis of stagnant flooding tolerance in rice. Rice. Sci. 24:(2): 73–84. doi: 10.1016/j.rsci.2016.08.008CrossRefGoogle Scholar
  17. Chen, S., Xia, G., Zhang, G. 2008. Nutrition Accumulation, Remobilization, and Partitioning in Rice on No-Tillage Soil. J. Plant. Nutr. 31(11):2044–2058.CrossRefGoogle Scholar
  18. Crusciol, C.A.C., Fernandes, A.M., Carmies Filho, A.C.A., Alvarez, R.C.F. 2016. Macronutrient uptake and removal by upland rice cultivars with different plant architecture. Rev. Bras. Cienc. Solo. 40:e0150115.Google Scholar
  19. Dębska, B., Długosz, J., Piotrowska-Długosz, A., Banach-Szott, M. 2016. The impact of a bio-fertilizer on the soil organic matter status and carbon sequestration results from a field-scale study. J. Soil. Sediment. 16:2335–2345.CrossRefGoogle Scholar
  20. Delshadi, S., Ebrahimi, M., Shirmohammadi, E. 2017. Influence of plant-growth-promoting bacteria on germination, growth and nutrients’ uptake of Onobrychis sativa L. under drought stress. J. Plant. Interact. 12(1):200–208.CrossRefGoogle Scholar
  21. Duarah, I., Deka, M., Saikia, N., Boruah, H.D. 2011. Phosphate solubilizers enhance NPK fertilizer use efficiency in rice and legume cultivation. 3 Biotech. 1:227–238.CrossRefGoogle Scholar
  22. Fageria, N.K., Dos Santos, A.B., Coelho, A.M. 2011. Growth, yield and yield components of lowland rice as influenced by ammonium sulphate and urea fertilization. J. Plant. Nutr. 34(3):371–386.CrossRefGoogle Scholar
  23. Fageria, N.K., Gheyi, H.R., Carvalho, C.S. 2014. Yield, potassium uptake, and use efficiency in upland rice genotypes. II INOVAGRI International Meeting, 13–16 April, Fortaleza, Brazil. pp. 4515–4520.Google Scholar
  24. Li, H.B., Singh, R.K., Singh, P., Song, Q.Q., Xing, Y.X., Yang, L.T., Li, Y.R. 2017. Genetic Diversity of Nitrogen-Fixing and Plant Growth Promoting Pseudomonas Species Isolated from Sugarcane Rhizosphere. Front. Microbiol. 8:1268.CrossRefGoogle Scholar
  25. Maheshwari, D.K. 2010. Plant Growth and Health Promoting Bacteria. Springer Science & Business Media, Germany.Google Scholar
  26. Meena, V.S., Maurya, B.R., Verma, J.P. 2014. Does a rhizospheric microorganism enhance K availability in agricultural soils? Microbiol. Res. 169:337–347.Google Scholar
  27. Meena, V.S., Maurya, B.R., Verma, J.P., Meena, R.S. 2016. Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer, India.CrossRefGoogle Scholar
  28. Meena, V.S., Meena, S.K., Verma, J.P., Kumar, A., Aeron, A., Mishra, P.K., Bisht, J.K., Pattanayak, A. Navved, M., Dotaniya, M.L. 2017. Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: A review. Ecol. Eng. 107:8–32.CrossRefGoogle Scholar
  29. Mishra, D.J., Singh, R., Mishra, U.K., Shahi, S.K. 2013. Role of bio-fertilizer in organic agriculture: a review. Res. J. Recent Sci. 2:39–41.Google Scholar
  30. Naeem, M., Ansari, A.A., Gill, S.S. 2017. Essential Plant Nutrients: Uptake, Use Efficiency, and Management. Springer International Publishing AG Switzerland.Google Scholar
  31. Nath, D., Maurya, B.R., Meena, V.S. 2017. Documentation of five potassium- and phosphorus-solubilizing bacteria for their K and P-solubilization ability from various minerals. ISBAB. 10:174–181.Google Scholar
  32. Pii. Y., Mimmo, T., Tomasi, N., Terzano, R., Cesco, S., Crecchio, C. 2015. Microbial interactions in the rhizosphere: beneficial influences of plant growth promoting Rhizobacteria on nutrient acquisition process. A review. Biol. Fertil. Soils. 51:403–415.CrossRefGoogle Scholar
  33. Prajapati, K., Sharma, M.C., Modi, H.A. 2013. Growth promoting effect of potassium solubilizing microorganism on OKRA (Abelmoscus Esculantus). Int. J. Environ. Agric. Res. 3(1):181–188.Google Scholar
  34. Raheb, A., Heidari, A. 2012. Effects of clay mineralogy and physico-chemical properties on potassium availability under soil aquic conditions. J. Soil Sci. Plant Nutr. 12(4):747–761.Google Scholar
  35. Santoro, M.V., Cappellari, L.R., Giodano, W., Banchio, E. 2015. Plant growth-promoting effects of native Pseudomonas strains on Mentha piperita (peppermint): an in vitro study. Plant. Biol. 17(6):1218–1226.CrossRefGoogle Scholar
  36. Santos, E.F., Macedo, F.G., Zanchim, B.J., Camacho, M.A., Lavres, J. 2017. Macronutrients uptake rate and biomass partitioning during early growth of Jatropha plants. Rev. Ciên. Agron. 48(4):565–575.Google Scholar
  37. Scagliola, M., Pii, Y., Mimmo, T., Cesco, S., Ricciuti, P., Crecchio, C. 2016. Characterization of plant growth promoting traits of bacterial isolates from the rhizosphere of barley (Hordeum vulgare L.) and tomato (Solanum lycopersicon L.) grown under Fe sufficiency and deficiency. Plant. Physiol. Biochem. 107:187–196.Google Scholar
  38. Sharma, S.B., Sayyed, R.Z., Trivedi, M.H., Gobi, T.A. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2:587.CrossRefGoogle Scholar
  39. Tabassum, B., Khan, A., Tariq, M., Ramazan, M., Iqbal Khan, M.S., Shahid, N., Aaliya, K. 2017. Bottlenecks in commercialisation and future prospects of PGPR. Appl. Soil. Ecol. 121:102–117.CrossRefGoogle Scholar
  40. Unger, I.M., Kennedy, A.C., Muzika, R.M. 2009. Flooding effects on soil microbial communities. Appl. Soil. Ecol. 42(1):1–8.CrossRefGoogle Scholar
  41. Vries, M.P.C. 1980. How reliable are results of pot experiments? Commun. Soil. Sci. Plant. Anal. 11(9):895–902.CrossRefGoogle Scholar
  42. White, P.J. 2012. Long-distance transport in the xylem and phloem. In: Marschner P, (Ed.) Marschner’s mineral nutrition of higher plants. 3rd ed. Berlin: Elsevier. pp. 49–70.CrossRefGoogle Scholar
  43. Yaghoubi Khanghahi, M., Pirdashti, H., Rahimian, H., Nematzadeh, G.A., Ghajar Sepanlou, M. 2017. Potassium solubilising bacteria (KSB) isolated from rice paddy soil: from isolation, identification to K use efficiency. Symbiosis. 77(3):1–11.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2018

Authors and Affiliations

  • M. Yaghoubi Khanghahi
    • 1
    Email author
  • H. Pirdashti
    • 1
  • H. Rahimian
    • 2
  • G. A. Nematzadeh
    • 3
  • M. Ghajar Sepanlou
    • 4
  1. 1.Department of AgronomyGenetics and Agricultural Biotechnology Institute of Tabarestan and Sari Agricultural Sciences and Natural Resources UniversitySariIran
  2. 2.Department of Plant PathologySari Agricultural Sciences and Natural Resources UniversitySariIran
  3. 3.Department of Plant BreedingGenetics and Agricultural Biotechnology Institute of Tabarestan and Sari Agricultural Sciences and Natural Resources UniversitySariIran
  4. 4.Department of Soil SciencesSari Agricultural Sciences and Natural Resources UniversitySariIran

Personalised recommendations