Advertisement

Cereal Research Communications

, Volume 46, Issue 2, pp 221–231 | Cite as

Optimizing callus induction and proliferation for Agrobacterium-mediated transformation of Brachypodium distachyon

  • A. BehpouriEmail author
  • A. Perochon
  • F. M. Doohan
  • C. K. Y. Ng
Article

Abstract

Brachypodium distachyon has emerged as the model species for important temperate grass crops such as wheat and barley and the genome of the B. distachyon community inbred line Bd21 has been sequenced. Methods for tissue culture and Agrobacterium-mediated transformation have been developed for this model grass as a resource for reverse genetics and functional genomic analyses. In order to obtain a high quantity and quality of compact embryogenic callus (CEC) in B. distachyon, it is important to examine and optimize the optimal concentration of the auxin 2,4-D (dichlorophenoxyacetic acid) to use in both callus induction and callus proliferation media. Here, we investigated the effects of different concentrations of 2,4-D on callus induction and callus proliferation of B. distachyon Bd21. Our results showed that 2.5 mg l−1 2,4-D is an optimal concentration to use for both callus induction and proliferation, although 5.0 mg l−1 may also be used for callus proliferation. Additionally, the suitability of hygromycin or bialaphos as selectable markers was examined and results indicated that hygromycin is significantly more efficient than bialaphos when using the Agrobacterium-mediated transformation system.

Keywords

Brachypodium distachyon immature embryos callus induction and proliferation Agrobacterium-mediated transformation selectable marker 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2018_4602221_MOESM1_ESM.pdf (401 kb)
Supplementary material, approximately 411 KB.

References

  1. Alves, S.C., Worland, B., Thole, V., Snape, J.W., Bevan, M.W., Vain, P. 2009. A protocol for Agrobacterium-mediated transformation of Brachypodium distachyon community standard line Bd21. Nat. Protoc. 4:638–649.CrossRefGoogle Scholar
  2. An, T., Cai, Y, Zhao, S., Zhou, J., Song, B., Bux, H., Qi, X. 2016. Brachypodium distachyon T-DNA insertion lines: a model pathosystem to study nonhost resistance to wheat stripe rust. Sci. Rep. 6:25510.CrossRefGoogle Scholar
  3. Bragg, J.N., Anderton, A., Nieu, R., Vogel, J.P. 2015. Brachypodium distachyon. In: Wang, K. (ed), Agrobacterium Protocols. Springer. New York, USA. pp. 17–33.CrossRefGoogle Scholar
  4. Bragg, J.N., Wu, J., Gordon, S.P., Guttman, M.E., Thilmony, R., Lazo, G.R., Gu, Y.Q, Vogel, J.P., 2012. Generation and characterization of the western regional research center Brachypodium T-DNA insertional mutant collection. PLoS ONE 7:e41916.CrossRefGoogle Scholar
  5. Bablak, P., Draper, J., Davey, M.R., Lynch, P.T. 1995. Plant regeneration and micropropagation of Brachypodium distachyon. Plant Cell Tiss. Org. 42:97–107.CrossRefGoogle Scholar
  6. Cheng, M., Hu, T., Layton, J., Liu, C.N., Fry, J.E. 2003. Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat. In Vitro Cell. Dev.-Pl. 39:595–604.CrossRefGoogle Scholar
  7. Cheng, M., Lowe, B.A., Spencer, T.M., Ye, X., Armstrong, C.L. 2004. Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell. Dev.- Pl. 40:31–45.CrossRefGoogle Scholar
  8. Christiansen, P., Andersen, C.H., Didion, T., Folling, M., Nielsen, K.K. 2005. A rapid and efficient transformation protocol for the grass Brachypodium distachyon. Plant Cell Rep. 23:751–758.CrossRefGoogle Scholar
  9. Collier, R., Bragg, J., Hernandez, B.T., Vogel, J.P., Thilmony, R. 2016. Use of Agrobacterium rhizogenes strain 18r12v and paromomycin selection for transformation of Brachypodium distachyon and Brachypodium sylvaticum. Front. Plant Sci. 7:716.CrossRefGoogle Scholar
  10. Draper, J., Mur, L.A., Jenkins, G., Ghosh-Biswas, G.C., Bablak, P., Hasterok, R., Routledge, A.P. 2001. Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol. 127:1539–1555.PubMedGoogle Scholar
  11. Eamens, A.L., Blanchard, C.L., Dennis, E.S., Upadhyaya, N.M. 2004. A bidirectional gene trap construct suitable for T-DNA and Ds-mediated insertional mutagenesis in rice (Oryza sativa L.). Plant Biotechnol. J. 2:367–380.CrossRefGoogle Scholar
  12. Garvin, D., Gu, Y., Hasterok, R., Hazen, S., Jenkins, G., Mockler, T., Mur, L., Vogel, J. 2008. Development of genetic and genomic research resources for Brachypodium distachyon, a new model system for grass crop research. Crop Sci. 48:S69–S84.CrossRefGoogle Scholar
  13. Hanahan, D. 1983. Studies on the transformation of Escherichia coli with plasmids. J. Mol. Biol. 166:557–580.CrossRefGoogle Scholar
  14. Hunt, D., Chambers, J.P., Behpouri, A., Kelly, S.P., Whelan, L., Piettrzykowska, M., Downey, F., Mccabe, P.F., Ng, C.K.Y. 2014. Brachypodium distachyon cell suspension cultures: establishment and utilization. Cereal Res. Commun. 42:58–69.CrossRefGoogle Scholar
  15. Lee, M.B., Jeon, W.B., Kim, D.Y., Bold, O., Hong, M.J., Lee, Y.J., Park, J.H., Seo, Y.W. 2011. Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21 with two binary vectors containing hygromycin resistance and GUS reporter genes. J. Crop Sci. Biotechnol. 14:233–238.CrossRefGoogle Scholar
  16. Mohammadhassan, R., Kashefi, B., Shabanzadeh, Delcheh, K. 2014. Agrobacterium-based vectors: a review. Intl. J. Farm. Allied Sci. 3:1002–1008.Google Scholar
  17. Păcurar, D.I., Thordal-Christensen, H., Nielsen, K.K., Lenk, I. 2008. A high-throughput Agrobacterium-mediated transformation system for the grass model species Brachypodium distachyon L. Transgenic Res. 17:965–975.CrossRefGoogle Scholar
  18. Perochon, A., Jianguang, J., Kahla, A., Arunachalam, C., Scofield, S.R., Bowden, S., Wallington, E., Doohan, F.M. 2015. TaFROG encodes a pooideae orphan protein that interacts with SnRK1 and enhances resistance to the mycotoxigenic fungus Fusarium graminearum. Plant Physiol. 169:2895–906.PubMedPubMedCentralGoogle Scholar
  19. Steinwand, M.A., Young, H.A., Bragg, J.N., Tobias, C.M., Vogel, J.P. 2013. Brachypodium sylvaticum, a model for perennial grasses: transformation and inbred line development. PLoS ONE 8:e75180.CrossRefGoogle Scholar
  20. The International Brachypodium Initiative. 2010. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768.CrossRefGoogle Scholar
  21. Thole, V., Peraldi, A., Worland, B., Nicholson, P., Doonan, J.H., Vain, P. 2011. T-DNA mutagenesis in BrachyIpodium distachyon. J. Exp. Bot. 63:567–576.CrossRefGoogle Scholar
  22. Thole, V., Vain, P. 2012. Agrobacterium-mediated transformation of Brachypodium distachyon. Transg. Plants 847:137–149.CrossRefGoogle Scholar
  23. Vain, P., Thole, V. 2009. Gene Insertion Patterns and Sites. In: Jones, H.D., Shewry, P.R. (eds), Transgenic Wheat, Barley and Oats: Production and Characterization Protocols Humana Press. Totowa, NJ, USA. pp. 203–226.CrossRefGoogle Scholar
  24. Vain, P., Worland, B., Thole, V., McKenzie, N., Alves, S.C., Opanowicz, M., Fish, L.J., Bevan, M.W., Snape, J.W. 2008. Agrobacterium-mediated transformation of the temperate grass Brachypodium distachyon (genotype Bd21) for T-DNA insertional mutagenesis. Plant Biotechnol. J. 6:236–245.CrossRefGoogle Scholar
  25. Vogel, J.P., Gu, Y.Q., Twigg, P., Lazo, G.R., Laudencia-Chingcuanco, D., Hayden, D.M., Donze, T.J., Vivian, L.A., Stamova, B., Coleman-Derr, D. 2006a. EST sequencing and phylogenetic analysis of the model grass Brachypodium distachyon. Theor. Appl. Genet. 113:186–195.CrossRefGoogle Scholar
  26. Vogel, J.P., Hill, T. 2008. High-efficiency Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21-3. Plant Cell Rep. 27:471–478.CrossRefGoogle Scholar
  27. Vogel, J.P., Garvin, D.F., Leong, O.M., Hayden, D.M. 2006b. Agrobacterium-mediated transformation and inbred line development in the model grass Brachypodium distachyon. Plant Cell Tiss. Org. 84:199–211.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2018

Authors and Affiliations

  • A. Behpouri
    • 1
    • 4
    Email author
  • A. Perochon
    • 1
    • 2
    • 3
  • F. M. Doohan
    • 1
    • 2
    • 3
  • C. K. Y. Ng
    • 1
    • 2
    • 3
  1. 1.School of Biology and Environmental ScienceUniversity College DublinBelfieldIreland
  2. 2.UCD Centre for Plant ScienceUniversity College DublinBelfieldIreland
  3. 3.UCD Earth InstituteUniversity College DublinBelfieldIreland
  4. 4.Department of Agroecology, Darab College of Agriculture and Natural ResourcesShiraz UniversityDarabIran

Personalised recommendations