Advertisement

Cereal Research Communications

, Volume 46, Issue 3, pp 412–423 | Cite as

QTL for Sensitivity of Seedling Height to Exogenous GA3 and Their Effects on Adult Plant Height in Common Wheat

  • N. Zhang
  • R. Q. Pan
  • J. J. Liu
  • X. L. Zhang
  • Q. N. Su
  • F. Cui
  • C. H. Zhao
  • L. Q. Song
  • J. Ji
  • J. M. LiEmail author
Article

Abstract

Plants with deficiency in Gibberellins (GAs) biosynthesis pathway are sensitive to exogenous GA3, while those with deficiency in GAs signaling pathway are insensitive to exogenous GA3. Thus, exogenous GA3 test is often used to verify whether the reduced height (Rht) gene is involved in GAs biosynthesis or signaling pathway. In the present study, we identified the genetic factors responsive to exogenous GA3 at the seedling stage of common wheat and analyzed the response of the plant height related quantitative trait loci (QTL) to GA3 to understand the GAs pathways the Rht participated in. Recombinant inbred lines derived from a cross between KN9204 and J411 with different response to exogenous GA3 were used to screen QTL for the sensitivity of coleoptile length (SCL) and the sensitivity of seedling plant height (SSPH) to exogenous GA3. Two additive QTL and two pairs of epistatic QTL for SCL were identified, meanwhile, two additive QTL and three pairs of epistatic QTL for SSPH were detected. For the adult plant height (PH) investigated in two environments, six additive QTL were identified. Three QTL qScl-4B, qSsph-4B and qPh-4B were mapped in one cluster near the functional marker Rht-B1b. When PH were conditional on SSPH, the absolute additive effect value of qPh-4B and qPh-6B were reduced, suggesting that the Rhts in both two QTL were insensitive to exogenous GA3, while the additive effect values of qPh-2B, qPh-3A, qPh-3D and qPh-5A were not significantly changed, indicating that the Rhts in these QTL were sensitive to exogenous GA3, or they were not expressed at the seedling stage.

Keywords

quantitative trait loci (QTL) gibberellin sensitivity coleoptile plant height common wheat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2018_4603412_MOESM1_ESM.pdf (274 kb)
Supplementary material, approximately 281 KB.

References

  1. Beharav, A., Pinthus, M.J., Cahaner, A. 1994. Genotypic variation in the responsiveness to GA3 within tall (rht1) and semi-dwarf (Rht1) spring wheat. Plant Growth Regul. 15:43–46.CrossRefGoogle Scholar
  2. Chen, L., Hao, L., Condon, A.G., Hu, Y.G. 2014. Exogenous GA3 application can compensate the morphogenetic effects of the GA-responsive dwarfing gene Rht12 in bread wheat. PloS one 9:e86431.CrossRefGoogle Scholar
  3. Cui, F., Fan, X., Zhao, C., Zhang, W., Chen, M., Ji, J., Li, J. 2014. A novel genetic map of wheat: utility for mapping QTL for yield under different nitrogen treatments. BMC Genet. 15:57CrossRefGoogle Scholar
  4. Cui, F., Zhang, N., Fan, X.L., Zhang, W., Zhao, C.H., Yang, L.J., Pan, R.Q., Chen, M., Han, J., Zhao, X.Q., Ji, J., Tong, Y.P., Zhang, H.X., Jia, J.Z., Zhao, G.Y., Li, J.M. 2017. Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci. Rep. 7:3788CrossRefGoogle Scholar
  5. Ellis, H., Spielmeyer, W., Gale, R., Rebetzke, J., Richards, A. 2002. “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor. Appl. Genet. 105:1038–1042.CrossRefGoogle Scholar
  6. Ellis, M.H., Rebetzke, G.J., Chandler, P., Bonnett, D., Spielmeyer, W. 2004. The effect of different height reducing genes on the early growth of wheat. Funct. Plant Biol. 31:583CrossRefGoogle Scholar
  7. Fan, X., Cui, F., Zhao, C., Zhang, W., Yang, L., Zhao, X., Han, J., Su, Q., Ji, J., Zhao, Z., Tong, Y., Li, J. 2015. QTLs for flag leaf size and their influence on yield-related traits in wheat (Triticum aestivum L.). Mol. Breeding 35:1–16.CrossRefGoogle Scholar
  8. Gomi, K., Sasaki, A., Itoh, H., Ueguchi-Tanaka, M., Ashikari, M., Kitano, H., Matsuoka, M. 2004. GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. Plant J. 37:626–634.CrossRefGoogle Scholar
  9. Hirano, K., Asano, K., Tsuji, H., Kawamura, M., Mori, H., Kitano, H., Ueguchi-Tanaka, M., Matsuoka, M. 2010. Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice. Plant Cell 22:2680–2696.CrossRefGoogle Scholar
  10. Hooley, R. 1994. Review Gibberellins: perception, transduction and responses. Plant Mol. Biol. 26:1529–1555.CrossRefGoogle Scholar
  11. Ikeda, A., Ueguchi-Tanaka, M., Sonoda, Y., Kitano, H., Koshioka, M., Futsuhara, Y., Matsuoka, M., Yamaguchi, J. 2001. Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13:999–1010.CrossRefGoogle Scholar
  12. Itoh, H., Tanaka-Ueguchi, M., Kawaide, H., Chen, X., Kamiya, Y., Matsuoka, M. 1999. The gene encoding tobacco gibberellin 3 beta-hydroxylase is expressed at the site of GA action during stem elongation and flower organ development. Plant J. 20:15–24.CrossRefGoogle Scholar
  13. Koornneef, M., van der Veen, J.H. 1980. Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L.) Heynh. Theor. Appl. Genet. 58:257–263.CrossRefGoogle Scholar
  14. Magome, H., Yamaguchi, S., Hanada, A., Kamiya, Y., Oda, K. 2004. Dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellins biosynthesis because of over-expression of a putative AP2 transcription factor. Plant J. 37:720–729.CrossRefGoogle Scholar
  15. Peng, J., Carol, P., Richards, D.E., King, K.E., Cowling, R.J., Murphy, G.P., Harberd, N.P. 1997. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes & development 11:3194–3205.CrossRefGoogle Scholar
  16. Peng, J.R., Richards, D.E., Hartley, N.M., Murphy, G.P., Devos, K.M., Flintham, J.E., Beales, J.E., Fish, L.J., Worland, A.J., Pelica, F., Sudhakar, D., Christou, P., Snape, J.W., Gale, M.D., Harberd, N.P. 1999. ‘Green revolution genes’ encode mutant gibberellin response modulators. Nature 400:256–261.CrossRefGoogle Scholar
  17. Rebers, M., Kaneta, T., Kawaide, H., Yamaguchi, S., Yang, Y.Y., Imai, R., Sekimoto, H., Kamiya, Y. 1999. Regulation of gibberellin biosynthesis genes during flower and early fruit development of tomato. Plant J. 17:241–250.CrossRefGoogle Scholar
  18. Rota, M.L., Sorrells, M.E. 2004. Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between rice and wheat. Funct. Integr. Genomic. 4:34–46.CrossRefGoogle Scholar
  19. Sasaki, A., Ashikari, M., Ueguchi-Tanaka, M., Itoh, H., Nishimura, A., Swapan, D., Ishiyama, K., Saito, T., Kobayashi, M., Khush, G.S., Kitano, Matsuoka, M. 2002. A mutant gibberellin-synthesis gene in rice. Nature 416:701–702.CrossRefGoogle Scholar
  20. Silverstone, A.L., Chang, C., Krol, E., Sun, T.P. 1997. Developmental regulation of the gibberellin biosynthetic gene GA1 in Arabidopsis thaliana. Plant J. 12:9–19.CrossRefGoogle Scholar
  21. Strader, L.C., Ritchie, S., Soule, J.D., McGinnis, K.M., Steber, C.M. 2004. Recessive-interfering mutations in the gibberellin signaling gene SLEEPY1 are rescued by over-expression of its homologue, SNEEZY. Proc. Natl. Acad. Sci. USA 101:12771–12776.CrossRefGoogle Scholar
  22. Sun, D., Li, W., Zhang, Z., Chen, Q., Ning, H., Qiu, L., Sun, G. 2006. Quantitative trait loci analysis for the developmental behavior of soybean (Glycine max L.). Theor. Appl. Genet. 112:665–673.CrossRefGoogle Scholar
  23. Swain, S.M., Olszewski, N.E. 1996. Genetic analysis of gibberellin signal transduction. J. Plant Physiol. 112:11–17CrossRefGoogle Scholar
  24. Talon, M., Koornneef, M., Zeevaart, J.A. 1990. Endogenous gibberellins in Arabidopsis thaliana and possible steps blocked in the biosynthetic pathways of the semi-dwarf ga4 and ga5 mutants. Proc. Natl. Acad. Sci. USA 87:7983–7987.CrossRefGoogle Scholar
  25. Tang, N., Jiang, Y., He, B., Hu, Y. 2009. The effects of dwarfing genes (Rht-B1b, Rht-D1b, and Rht8) with different sensitivity to GA3 on the coleoptile length and plant height of wheat. Agr. Sci. China 8:1028–1038.CrossRefGoogle Scholar
  26. Ueguchi-Tanaka, M., Ashikari, M., Nakajima, M., Itoh, H., Katoh, E., Kobayashi, M., Chow, T., Hsing, Y.C., Kitano, H., Yamaguchi, I., MatsuokaUeguchi-Tanaka, M., Ashikari, M., Nakajima, M., Itoh, H., Katoh, E., Kobayashi, M., Chow, T., Hsing, Y.C., Kitano, H., Yamaguchi, I., Matsuoka, M. 2005. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellins. Nature 437:693–698.CrossRefGoogle Scholar
  27. Wang, Z., Wu, X., Ren, Q., Chang, X., Li, R., Jing, R. 2010. QTL mapping for developmental behavior of plant height in wheat (Triticum aestivum L.). Euphytica 174:447–458.CrossRefGoogle Scholar
  28. Wu, J., Kong, X., Wan, J., Liu, X., Zhang, X., Guo, X., Zhou, R., Zhao, G., Jing, R., Fu, X., Jia, J. 2011. Dominant and pleiotropic effects of a GAI gene in wheat results from a lack of interaction between DELLA and GID1. J. Plant Physiol. 157:2120–2130.CrossRefGoogle Scholar
  29. Yamaguchi, S., Smith, M.W., Brown, R.G., Kamiya, Y., Sun, T. 1998. Phytochrome regulation and differential expression of gibberellin 3beta-hydroxylase genes in germinating Arabidopsis seeds. Plant Cell 10:2115–2126.PubMedPubMedCentralGoogle Scholar
  30. Zhang, N., Fan, X.L., Cui, F, Zhao, C.H., Zhang, W., Zhao, X., Yang, L., Pan, R.Q., Chen, M., Han, J., Ji, J., Liu, D., Zhao, Z., Tong, Y., Zhang, A., Wang, T., Li, J. 2017. Characterization of the temporal and spatial expression of wheat (Triticum aestivum L.) plant height at the QTL level and their influence on yield-related traits. Theor. Appl. Genet. 130:1235–1252.CrossRefGoogle Scholar
  31. Zhu, J. 1995. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics 141:1633–1639.PubMedPubMedCentralGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2018

Authors and Affiliations

  • N. Zhang
    • 1
  • R. Q. Pan
    • 1
    • 2
  • J. J. Liu
    • 1
    • 2
  • X. L. Zhang
    • 1
  • Q. N. Su
    • 2
  • F. Cui
    • 3
  • C. H. Zhao
    • 3
  • L. Q. Song
    • 1
  • J. Ji
    • 1
  • J. M. Li
    • 1
    Email author
  1. 1.Center for Agricultural Resources ResearchInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesShijiazhuangChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Genetic Improvement Centre of Agricultural and Forest CropsCollege of Agriculture, Ludong UniversityYan’taiChina

Personalised recommendations