Attenuation of Lead Toxicity by Promotion of Tolerance Mechanism in Wheat Roots by Lipoic Acid

Abstract

This study was performed to determine the possible ameliorative effect of alpha-lipoic acid (LA) against oxidative stress evoked by lead (Pb) toxicity on 5-d wheat seedlings and elucidate how this ameliorative process was mediated. Pb toxicity caused a significant reduction in early seedling growth as evidenced by stunted root and coleoptile growth. To cope with the Pb toxicity, the activities of antioxidant enzymes were significantly stimulated compared to the control. However, in spite of high activities of these enzymes, contents of reactive oxygen species (ROS), superoxide anion and hydrogen peroxide and lipid peroxidation level were significantly high compared with the control. Similarly, Pb toxicity caused a marked decrease in the level of reduced forms of ascorbate and glutathione and thus it changed their reduced/oxidized ratio in favor of oxidized forms. On the other hand, LA supplementation further promoted uptake, accumulation, and transportation of Pb by stimulating tolerance mechanism involving ion uptake/accumulation at a high level. Moreover, ROS content and lipid peroxidation level were recorded as lower than that of the stressed-ones alone. In addition, while Pb toxicity markedly reduced amylase activity by decreasing Ca2+ content in endosperms, LA supplementation mitigated the reduction in amylase activity by increasing Ca2+ content. The changes in amylase activity were supported by isozymes patterns. Taken together, LA carried out its ameliorative effect against Pb toxicity via stimulation of tolerance mechanism, and this mechanism was linked to regeneration of the other main antioxidant compounds due to its own antioxidant property instead of activation of antioxidant enzymes.

References

  1. Agarwal, S., Pandey, V. 2004. Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biol. Plantarum. 48:555–560.

    CAS  Google Scholar 

  2. Bush, D.S., Sticher, L., van Huystee, R., Wagner, D., Jones, R.L. 1989. The calcium requirement for stability and enzymatic activity of two isoforms of barley aleurone alpha-amylase. J. Biol. Chem. 264:19392–19398.

    CAS  PubMed  Google Scholar 

  3. Cakatay, U. 2006. Pro-oxidant actions of alpha-lipoic acid and dihydrolipoic acid. Med. Hypotheses. 66:110–117.

    CAS  PubMed  Google Scholar 

  4. Chen, J., Zhu, C., Li, L.P., Sun, Z.Y., Pan, X.B. 2007. Effects of exogenous salicylic acid on growth and H2O2-metabolizing enzymes in rice seedlings under lead stress. J. Environ. Sci. 19:44–49.

    CAS  Google Scholar 

  5. Du, Z.Y., Bramlage, W.J. 1995. Peroxidative activity of apple peel in relation to development of poststorage disorders. Hortscience. 30:205–209.

    CAS  Google Scholar 

  6. Elstner, E.F., Heupel, A. 1976. Inhibition of nitrite formation from hydroxylammonium-chloride: a simple assay for superoxide dismutase. Anal. Biochem. 70:616–620.

    CAS  PubMed  Google Scholar 

  7. Erdal, S. 2012. Androsterone-induced molecular and physiological changes in maize seedlings in response to chilling stress. Plant Physiol. Bioch. 57:1–7.

    CAS  Google Scholar 

  8. Foyer, C.H., Halliwell, B. 1976. The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta. 133:21–25.

    CAS  PubMed  Google Scholar 

  9. Genisel, M., Turk, H., Erdal, S., Demir, Y., Genc, E., Terzi, I. 2015. Ameliorative role of beta-estradiol against lead-induced oxidative stress and genotoxic damage in germinating wheat seedlings. Turk. J. Bot. 39:1052–1060.

    Google Scholar 

  10. Gichner, T., Znidar, I., Szakova, J. 2008. Evaluation of DNA damage and mutagenicity induced by lead in tobacco plants. Mutat. Res-Gen. Tox. En. 652:186–190.

    CAS  Google Scholar 

  11. Gorcek, Z., Erdal, S. 2015. Lipoic acid mitigates oxidative stress and recovers metabolic distortions in salt-stressed wheat seedlings by modulating ion homeostasis, the osmo-regulator level and antioxidant system. J. Sci. Food. Agr. 95:2811–2817.

    CAS  Google Scholar 

  12. Hodges, D.M., Andrews, C.J., Johnson, D.A., Hamilton, R.I. 1996. Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines. Physiol. Plantarum. 98:685–692.

    CAS  Google Scholar 

  13. Israr, M., Sahi, S.V. 2008. Promising role of plant hormones in translocation of lead in Sesbania drummondii shoots. Environ. Pollut. 153:29–36.

    CAS  PubMed  Google Scholar 

  14. Jiang, W.S., Liu, D.H. 2010. Pb-induced cellular defense system in the root meristematic cells of Allium sativum L. BMC Plant. Biol. 10:40

    PubMed  PubMed Central  Google Scholar 

  15. Juliano, B.O., Varner, J.E. 1969. Enzymic degradiation of starch granules in the cotyledons of germinating peas. Plant Physiol. 44:886–892.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Koller, D., Hadas, A. 1982. Water relations in the germination of seeds, in: Lange, O.L., Nobel, P.S., Osmond, C.B., Zigler, H.E. (eds), In: Encyclopedia of Plant Physiol. Berlin, pp. 401–431.

    Google Scholar 

  17. Kumar, B., Smita, K., Cumbal Flores, L. 2013. Plant mediated detoxification of mercury and lead. Arab. J. Chem. 10:S2335–2342.

    Google Scholar 

  18. Lamhamdi, M., Bakrim, A., Aarab, A., Lafont, R., Sayah, F. 2011. Lead phytotoxicity on wheat (Triticum aestivum L.) seed germination and seedlings growth. Cr. Biol. 334:118–126.

    CAS  Google Scholar 

  19. Mahmood, Q., Ahmad, R., Kwak, S.S., Rashid, A., Anjum, N.A. 2010. Ascorbate and glutathione: Protectors of plants in oxidative stress, in: Anjum, N.A., Umar, S., Chan, M.T. (eds), Ascorbate-Glutathione pathways and stress tolerance in plants. Springer, London.

    Google Scholar 

  20. Nakano, Y., Asada, K. 1981. Hydrogen-peroxide is scavenged by ascorbate-specific peroxidase in spinach-chloroplasts. Plant Cell Physiol. 22:867–880.

    CAS  Google Scholar 

  21. Navari-Izzo, F., Quartacci, M.F., Sgherri, C. 2002. Lipoic acid: a unique antioxidant in the detoxification of activated oxygen species. Plant Physiol. Bioch. 40:463–470.

    CAS  Google Scholar 

  22. Ou, P., Tritschler, H.J., Wolff, S.P. 1995. Thioctic (lipoic) acid: a therapeutic metal-chelating antioxidant? Biochem. Pharmacol. 50:123–126.

    CAS  Google Scholar 

  23. Ovecka, M., Takac, T., 2014. Managing heavy metal toxicity stress in plants: Biological and biotechnological tools. Biotechnol. Adv. 32:73–86.

    CAS  PubMed  Google Scholar 

  24. Patrick, L. 2002. Mercury toxicity and antioxidants: Part 1: role of glutathione and alpha-lipoic acid in the treatment of mercury toxicity. Altern. Med. Rev. 7:456–471.

    PubMed  Google Scholar 

  25. Perez-Clemente, R.M., Vives, V., Zandalinas, S.I., Lopez-Climent, M.F., Munoz, V., Gomez-Cadenas, A. 2013. Biotechnological approaches to study plant responses to stress. Biomed. Res. Int. 654120

    Google Scholar 

  26. Pourrut, B., Shahid, M., Douay, F., Dumat, C., Pinelli, E. 2013. Molecular mechanisms involved in lead uptake, toxicity and detoxification in higher plants, in: Gupta, D.K., Corpas, F.J., Palma, J.M. (eds), Heavy metal stress in plants. Springer-Verlag Berlin Heidelberg.

    Google Scholar 

  27. Ramegowda, V., Senthil-Kumar, M. 2015. The interactive effects of simultaneous biotic and abiotic stresses on plants: Mechanistic understanding from drought and pathogen combination. J. Plant Physiol. 176:47–54.

    CAS  PubMed  Google Scholar 

  28. Samardakiewicz, S., Wozny, A. 2005. Cell division in Lemna minor roots treated with lead. Aquat. Bot. 83:289–295.

    CAS  Google Scholar 

  29. Sears, M.E. 2013. Chelation: harnessing and enhancing heavy metal detoxification – a review. Sci. World J. 219840.

    Google Scholar 

  30. Sengar, R.S., Gautam, M., Sengar, R.S., Garg, S.K., Sengar, K., Chaudhary, R. 2008. Lead stress effects on physiobiochemical activities of higher plants. Rev. Environ. Contam. T. 196:73–93.

    CAS  Google Scholar 

  31. Sgherri, C., Quartacci, M.F., Izzo, R., Navari-Izzo, F. 2002. Relation between lipoic acid and cell redox status in wheat grown in excess copper. Plant Physiol. Bioch. 40:591–597.

    CAS  Google Scholar 

  32. Sharma, P., Dubey, R.S. 2005. Lead toxicity in plants. Braz. J. Plant. Physiol. 17:35–52.

    CAS  Google Scholar 

  33. Sharma, S.S., Dietz, K.J. 2009. The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci. 14:43–50.

    CAS  PubMed  Google Scholar 

  34. Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J., Klenk, D.C. 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150:76–85.

    CAS  Article  Google Scholar 

  35. Tarchoune, I., Sgherri, C., Baâtour, O., Izzo, R., Lachaâl, M., Navari-Izzo, F., Ouerghi, Z. 2013. Effects of oxidative stress caused by NaCl or Na2SO4 excess on lipoic acid and tocopherols in Genovese and Fine basil (Ocimum basilicum). Ann. Appl. Biol. 163:23–32.

    CAS  Google Scholar 

  36. Turk, H., Erdal, S. 2015. Melatonin alleviates cold-induced oxidative damage in maize seedlings by up-regulating mineral elements and enhancing antioxidant activity. J. Plant Nutr. Soil Sci. 178:433–439.

    CAS  Google Scholar 

  37. Turk, H., Erdal, S., Genisel, M., Atici, O., Demir, Y., Yanmis, D. 2014. The regulatory effect of melatonin on physiological, biochemical and molecular parameters in cold-stressed wheat seedlings. Plant Growth Regul. 74:139–152.

    CAS  Google Scholar 

  38. Velikova, V., Yordanov, I., Edreva, A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants – Protective role of exogenous polyamines. Plant Sci. 151:59–66.

    CAS  Google Scholar 

  39. Verma, S., Dubey, R.S. 2003. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci. 164:645–655.

    CAS  Google Scholar 

  40. Wang, P.F., Zhang, S.H., Wang, C., Lu, J. 2012. Effects of Pb on the oxidative stress and antioxidant response in a Pb bioaccumulator plant Vallisneria natans. Ecotox. Environ. Safe. 78:28–34.

    CAS  Google Scholar 

  41. Yan, D.W., Duermeyer, L., Leoveanu, C., Nambara, E. 2014. The Functions of the Endosperm During Seed Germination. Plant Cell Physiol. 55:1521–1533.

    CAS  PubMed  Google Scholar 

  42. Yasuno, R., Wada, H. 2002. The biosynthetic pathway for lipoic acid is present in plastids and mitochondria in Arabidopsis thaliana. Febs Lett. 517:110–114.

    CAS  PubMed  Google Scholar 

  43. Ye, S.C., Hu, L.Y., Hu, K.D., Li, Y.H., Yan, H., Zhang, X.Q., Zhang, H. 2015. Hydrogen sulfide stimulates wheat grain germination and counteracts the effect of oxidative damage caused by salinity stress. Cereal Res. Commun. 43:213–224.

    CAS  Google Scholar 

  44. Ye, Y., Tam, N.F.Y., Wong, Y.S., Lu, C.Y. 2003. Growth and physiological responses of two mangrove species (Bruguiera gymnorrhiza and Kandelia candel) to waterlogging. Environ. Exp. Bot. 49:209–221.

    Google Scholar 

  45. Yildiz, M., Akcali, N., Terzi, H. 2015. Proteomic and biochemical responses of canola (Brassica napus L.) exposed to salinity stress and exogenous lipoic acid. J. Plant Physiol. 179:90–99.

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Erdal.

Additional information

Communicated by A. Aniol and I. Molnár

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Turk, H., Erdal, S., Karayel, U. et al. Attenuation of Lead Toxicity by Promotion of Tolerance Mechanism in Wheat Roots by Lipoic Acid. CEREAL RESEARCH COMMUNICATIONS 46, 424–435 (2018). https://doi.org/10.1556/0806.46.2018.020

Download citation

Keywords

  • lipoic acid
  • Pb
  • oxidative stress
  • antioxidant activity