Cereal Research Communications

, Volume 46, Issue 4, pp 580–590 | Cite as

Genetic Diversity in Wild Diploid Wheat T. urartu Revealed by SSR Markers

  • M. AbbasovEmail author


Genetic diversity of 74 T. urartu genotypes was studied using 11 SSR (simple sequence repeats) markers. The number of alleles ranged from 4 to 15, with an average of 8 alleles per primer. The mean values for the expected heterozygosity (He) and polymorphism information content (PIC) over all loci and populations were 0.56 and 0.52, respectively. From a geographic viewpoint the higher diversities were observed in Jordan, followed by Syria and Turkey. Diversity revealed within countries was higher than among them, even in the same regions of the relevant countries. The analysis of molecular variance revealed that most of the genetic variability was accounted for by differences within populations (90%), with less variability among them (10%). The dendrogram generated based on Nei’s dissimilarity matrix revealed three main clusters for which the grouping patterns were not clearly associated with the geographic origins, indicating the gene flow among different countries. Principal coordinate analysis (PCoA) confirmed subgrouping obtained by cluster analysis. In general, genetic distances between geographic regions were low or moderate, which was also supported by low values of pairwise Fst. Our findings can direct the sampling strategies on T. urartu in studied regions to find beneficial alleles. The heterotic groups detected by cluster and PCoA analysis in the present study can serve as effective candidates in crossing programs to broaden the genetic base in T. urartu.


wheat T. urartu SSR PIC genetic diversity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2018_4604580_MOESM1_ESM.pdf (142 kb)
Genetic Diversity in Wild Diploid Wheat T. urartu Revealed by SSR Markers
42976_2018_4604580_MOESM2_ESM.pdf (145 kb)
Genetic Diversity in Wild Diploid Wheat T. urartu Revealed by SSR Markers


  1. Adary, A.H. 1978. Genetic variation in landraces of durum wheat and its value in durum wheat improvement. PhD thesis, California University.Google Scholar
  2. Aliyev, R.T., Abbasov, M.A., Mammadov, A.C. 2007. Genetic identification of diploid and tetraploid wheat species with RAPD markers. Turk. J. Biol. 31(3):173–180.Google Scholar
  3. Babayeva, S., Akparov, Z., Abbasov, M., Mammadov, A., Zaifizadeh, M., Street, K. 2009. Diversity analysis of Central Asia and Caucasian lentil (Lens culinaris Medik.) germplasm using SSR fingerprinting. Genet. Resour. Crop Ev. 56(3):293–298.CrossRefGoogle Scholar
  4. Baum, B.R., Bailey, L.G. 2013. Genetic diversity in the red wild einkorn: T. urartu gandilyan (Poaceae: Triticeae). Genet. Resour. Crop Ev. 60(1):77–87.CrossRefGoogle Scholar
  5. Castagna, R.S., Perenzin, G.M., Heun, M. 1997. Genetic variability of the wild diploid wheat Triticum urartu revealed by RFLP and RAPD markers. Theor. Appl. Genet. 94:424–430.CrossRefGoogle Scholar
  6. Chao, S., Zhang, W., Dubcovsky, J., Sorrells, M. 2007. Evaluation of genetic diversity and genome-wide linkage disequilibrium among U.S. wheat (Triticum aestivum L.) germplasm representing different market classes. Crop Sci. 47:1018–1030.CrossRefGoogle Scholar
  7. Dhaliwal, H.S., Sidhu, J.S., Minocha, J.L. 1993. Genetic diversity in diploid and hexaploid wheats as revealed by RAPD markers. Crop Improv. 20:17–20.Google Scholar
  8. Dvorák, J., Terlizzi, P., Zhang, H.B., Resta, P. 1993. The evolution of polyploid wheats: identification of the A genome donor species. Genome 36:21–31.CrossRefGoogle Scholar
  9. Ehtemam, M.H., Rahiminejad, M.R., Saeidi, H., Tabatabaei, B.E.S., Krattinger, S.G., Keller, B. 2010 Relationships among the A Genomes of Triticum L. Species as Evidenced by SSR Markers, in Iran. Int. J. Mol. Sci. 11:4309–4325.CrossRefGoogle Scholar
  10. Farouji, A.E., Khodayari, H., Saeidi, H., Rahiminejad, M.R. 2015. Genetic diversity of diploid Triticum species in Iran assessed using inter-retroelement amplified polymorphisms (IRAP) markers. Biologia 70(1):52–60.CrossRefGoogle Scholar
  11. Ganapathy, K.N., Gomashe, S.S., Rakshit, S., Prabhakar, B., Ambekar, S.S., Ghorade, R.B., Biradar, B.D., Saxena, U., Patil, J.V. 2012. Genetic diversity revealed utility of SSR markers in classifying parental lines and elite genotypes of sorghum (‘Sorghum bicolor’ L. Moench). Aust. J. Crop Sci., 6(11):1486.Google Scholar
  12. Gashaw, A., Mohammed, H., Singh, H. 2007 Genetic divergence in selected durum wheat genotypes of ethiopian plasm. Afr. Crop Sci. J. 15(2):67–72.Google Scholar
  13. Guzmán, C., Alvarez, J.B. 2012. Molecular characterization of a novel waxy allele (Wx-Au1a) from Triticum urartu Thum. Ex Gandil. Genet. Resour. Crop Ev. 59(6):971–979.CrossRefGoogle Scholar
  14. Hajiyev, E.S., Akparov, Z.I., Aliyev, R.T., Saidova, S.V., Izzatullayeva, V.I., Babayeva, S.M., Abbasov, M.A. 2015. Genetic polymorphism of durum wheat (Triticum durum Desf.) accessions of Azerbaijan. Russ. J. Genet. 51:863–870.CrossRefGoogle Scholar
  15. Heun, M., Haldorsen, S., Vollan, K. 2008. Reassessing domestication events in the near east: einkorn and Triticum urartu. Genome 51(6):444–451.CrossRefGoogle Scholar
  16. Hammer, K., Filatenko, A.A., Korzun, V. 2000. Microsatellite markers – a new tool for distinguishing diploid wheat species. Genet. Resour. Crop Ev. 47(5):497–505.CrossRefGoogle Scholar
  17. Helguera, M., Khan, I.A., Dubcovsky, J. 2000. Development of PCR markers for wheat leaf rust resistance gene Lr47. Theor. Appl. Genet. 101: 625–631.CrossRefGoogle Scholar
  18. Huang, X.Q., Börner, A., Röder, M.S., Ganal, M.W. 2002. Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor. Appl. Genet. 105:699–707.CrossRefGoogle Scholar
  19. Izzatullayeva, V., Akparov, Z., Babayeva, S., Ojaghi, J., Abbasov, M. 2014. Efficiency of using RAPD and ISSR markers in evaluation of genetic diversity in sugar beet. Turk. J. Biol. 38(4):429–438.CrossRefGoogle Scholar
  20. Jakubizner, M.M. 1959. New wheat species. In: Jenkins, BC (eds), Proc. 1st Int. Wheat Genet. Symp. Winnipeg, Canada, pp.207–217.Google Scholar
  21. Johnson, B.L. 1975. Identification of the apparent B-genome donor of wheat. Can. J. Genet. Cytol. 17:21–39.CrossRefGoogle Scholar
  22. Liu, K., Muse, S.V. 2005. PowerMarker: Integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129.CrossRefGoogle Scholar
  23. Medini, M., Hamza, S., Rebai, A., Baum, M. 2005. Analysis of Genetic Diversity in Tunisian Durum Wheat Cultivars and Related Wild Species by SSR and AFLP Markers. Genet. Resour. Crop Ev. 52:21–31.CrossRefGoogle Scholar
  24. Moghaddam, M., Ehdaie, B., Waines, J.G. 2000. Genetic diversity in populations of wild diploid wheat Triticum urartu tum. Ex. gandil. Revealed by isozyme markers. Genet. Resour. Crop Ev. 47(3):323–334.CrossRefGoogle Scholar
  25. Mousavifard, S.S., Saeidi, H., Rahiminejad, M.R., Shamsadini, M. 2015. Molecular analysis of diversity of diploid Triticum species in Iran using ISSR markers. Genet. Resour. Crop Ev. 62(3):387–394.CrossRefGoogle Scholar
  26. Naghavi, M.R., Aghaei, M.J., Taleei, A.R., Omidi, M., Mozafari, J., Hassani, M.E. 2009. Genetic diversity of the D-genome in T. aestivum and Aegilops species using SSR markers. Genet. Resour. Crop Ev. 56(4):499–506.CrossRefGoogle Scholar
  27. Naghavi, M.R., Mardi, M., Ramshini, H.A., Fazelinasab, B. 2004. Comparative Analyses of the Genetic Diversity among Bread Wheat Genotypes Based on RAPD and SSR Markers. Iran. J. Biotechnol. 2:195–202.Google Scholar
  28. Parker, G.D., Langridge, P. 2000. Development of a STS marker linked to a major locus controlling flour colour in wheat (Triticum aestivum L.). Mol. Breeding. 6:169–174.CrossRefGoogle Scholar
  29. Perrier, X., Jacquemoud-Collet, J.P. 2006. DARwin software http://darwin.cirad.frdarwin
  30. Ren, X., Jiang, H., Yan, Z., Chen, Y., Zhou, X., Huang, L., Lei, Y., Huang, J., Yan, L., Qi, Y., Wei, W. 2014.Google Scholar
  31. Genetic diversity and population structure of the major peanut (Arachis hypogaea L.) cultivars grown in China by SSR markers. Plos One 9(2):p.e88091.Google Scholar
  32. Rouse, M.N., Jin, Y. 2011. Stem rust resistance in A-genome diploid relatives of wheat. Plant Dis. 95(8):941–944.CrossRefGoogle Scholar
  33. Singh, R., Kharb, R.P.S., Singh, V. 2003. Genetic divergence study in durum wheat based on seed vigor parameters. Wheat Inf. Service 96:20–22.Google Scholar
  34. Vagujfalvi, A., Crosatti, C., Galiba, G., Dubcovsky, J., Cattivelli, L. 2000. Two loci on wheat chromosome 5A regulate the differential cold-dependent expression of the cor14b gene in frosttolerant and frost-sensitive genotypes. Mol. Gen. Genet. 263:194–200.CrossRefGoogle Scholar
  35. Varshney, R.K., Prasad, M., Roy, J.K., Röder, M.S., Balyan, H.S., Gupta, P.K. 2001. Intregated physical maps of 2DL, 6BS and 7DL carrying loci for grain protein content and preharvest sprouling tolerance in bread wheat. Cereal Res. Commun. 29:33–40.Google Scholar
  36. Vierling, R.A., Nguyen, H.T. 1992. Use of RAPD markers to determine the genetic diversity of diploid wheat genotypes. Theor. Appl. Genet. 84(7):835–838.CrossRefGoogle Scholar
  37. Wang, X., Luo, G., Yang, W., Li, Y., Sun, J., Zhan, K., Liu, D., Zhang, A. 2017. Genetic diversity, population structure and marker-trait associations for agronomic and grain traits in wild diploid wheat Triticum urartu. BMC Plant Biol. 17:112.CrossRefGoogle Scholar
  38. Yuanwu, Z., Yujun, Y., 1995. Study on the γ radiosensitivity of monosomic lines of Sumai 3 to radiation from 60Co. Acta Agron. Sinica 21:429–433.Google Scholar
  39. Zanetti, S., Winzeler, M., Keller, M., Keller, B., Messmer, M. 2000. Genetic Analysis of Pre-Harvest Sprouting Resistance in a Wheat 3 Spelt Cross. Crop Sci. 40:1406–1417.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2018

Authors and Affiliations

  1. 1.Genetic Resources Institute of ANASBakuAzerbaijan
  2. 2.Baku State UniversityBakuAzerbaijan

Personalised recommendations