Advertisement

Cereal Research Communications

, Volume 46, Issue 2, pp 232–241 | Cite as

Quantitative trait loci for the diurnal flag leaf starch content during the early grain-filling stage in wheat (Triticum aestivum L.)

  • Y. Zhao
  • J. Wang
  • R. L. Zhao
  • X. Y. Li
  • X. F. Yang
  • S. H. Zhang
  • J. C. Tian
  • X. J. YangEmail author
Article

Abstract

Starch is a product of photosynthetic activities in leaves. Wheat yields largely depend on photosynthetic carbon fixation and carbohydrate metabolism in flag leaves. The mapping of quantitative trait loci (QTLs) associated with flag leaf starch content (FLSC) in wheat (Triticum aestivum L.) was completed using unconditional and conditional QTL analyses. The FLSC of this population during the early grain-filling stage was measured at six stages in six environments. Combining unconditional and conditional QTL mapping methods, eight unconditional QTLs and nine conditional QTLs were detected, with five QTLs identified as unconditional and conditional QTLs. Four unconditional QTLs (i.e. qFLS-1B, qFLS-1D-1, qFLS-4A, and qFLS-7D-1) and one conditional QTL (i.e. qFLS-3A-1) were identified in two of six environments. Two QTLs (qFLS-1D-2 and qFLS-7D-1), which significantly affected the FLSC, were identified using the unconditional QTL mapping method, while three QTLs (i.e. qFLS-1A, qFLS-3A-1, and qFLS-7D-1) were detected using the conditional QTL mapping method. Our findings provide new insights into the genetic mechanism and regulatory network underlying the diurnal FLSC in wheat.

Keywords

wheat (Triticum aestivum L.) quantitative trait loci developmental behaviour starch 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2018_4602232_MOESM1_ESM.pdf (716 kb)
Supplementary material, approximately 733 KB.

References

  1. Atchley, W.R., Zhu, J. 1997. Developmental quantitative genetics, conditional epigenetic variability and growth in mice. Genetics 147:765–776.PubMedPubMedCentralGoogle Scholar
  2. Bian, Y.L., Gu, X., Sun, D.L., Wang, Y.J., Yin, Z.T., Deng, D.X., Wang, Y.Q., Li, G.S. 2015. Mapping dynamic QTL of stalk sugar content at different growth stages in maize. Euphytica 205:85–94.CrossRefGoogle Scholar
  3. Calenge, F., Saliba-Colombani, V., Mahieu, S., Loudet, O., Daniel-Vedele, F., Krapp, A. 2006. Natural variation for carbohydrate content in Arabidopsis. Interaction with complex traits dissected by quantitative genetics. Plant Physiol. 141:1630–1643.CrossRefGoogle Scholar
  4. Deng, Z.H., Hu, S.N., Chen, F., Li, W.J., Chen, J.S., Sun, C.S., Zhang, Y.X., Wang, S.Y., Song, X.J. Tian, J.C. 2015. Genetic dissection of interaction between wheat protein and starch using three mapping populations. Mol. Breed. 35:1–9.CrossRefGoogle Scholar
  5. Doerge, R.W. 2002. Mapping and analysis of quantitative trait loci in experimental populations. Nat. Rev. Genet. 3:43–52.CrossRefGoogle Scholar
  6. Fondy, B.R., Geiger, D.R. 1985. Diurnal changes in allocation of newly fixed carbon in exporting sugar beet leaves. Plant Physiol. 78:753–757.CrossRefGoogle Scholar
  7. Fondy, B.R., Geiger, D.R., Servaites, J.C. 1989. Photosynthesis, carbohydrate metabolism, and export in Beta vulgaris L. and Phaseolus vulgaris L. during square and sinusoidal light regimes. Plant Physiol. 89:396–402.CrossRefGoogle Scholar
  8. Guo, C.Q., Bai, Z.A., Liao, P.A., Jin, W.K. 2004. New high quality and yield wheat variety Yumai 57. Crop Sci. 4:54.Google Scholar
  9. Hai, Y., Kang, M.H. 2007. Breeding of a new wheat variety Huapei 3 with high yield and early maturity. J. Henan Agric. Sci. 5:36–37.Google Scholar
  10. Ishimaru, K., Kashiwagi, T.N., Hirotsu, N., Madoka, Y. 2005. Identification and physiological analyses of a locus for rice yield potential across the genetic background. J. Exp. Bot. 5:2745–2753.CrossRefGoogle Scholar
  11. Ishimaru, K., Hirotsu, N., Madoka, Y., Kashiwagi, T.N. 2007. Quantitative trait loci for sucrose, starch, and hexose accumulation before heading in rice. Plant Physiol. Biochem. 45:799–804.CrossRefGoogle Scholar
  12. Jenner, C.F., Ugalde, T.D., Aspinall, D. 1991. The physiology of starch and protein deposition in the endosperm of wheat. J. Plant Physiol. 18:211–226.Google Scholar
  13. Jiang, P., Wan, Z.Y., Wang, Z.X., Li, S.S., Sun, Q.Q. 2013. Dynamic QTL analysis for activity of antioxidant enzymes and malondialdehyde content in wheat seed during germination. Euphytica 190:75–85.CrossRefGoogle Scholar
  14. Jiang, Z.F., Han, Y.P., Teng, W.L., Zhang, Z.C., Sun, D.S., Li, Y.H., Li, W.B. 2010. Identification of QTL underlying the filling rate of protein at different developmental stages of soybean seed. Euphytica 175:227–236.CrossRefGoogle Scholar
  15. Kato, K., Miura, H., Sawada, S. 2000. Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor. Appl. Genet. 101:1114–1121.CrossRefGoogle Scholar
  16. Kosambi, D.D. 1944. The estimation of map distances from recombination values. Ann. Eugen. 12:172–175.CrossRefGoogle Scholar
  17. Li, Q.F., Zhang, Y., Liu, T.T., Wang, F.F., Liu, K., Chen, J.S., Tian, J.C. 2015. Genetic analysis of kernel weight and kernel size in wheat (Triticum aestivum L.) using unconditional and conditional QTL mapping. Mol. Breed. 35:1–15.CrossRefGoogle Scholar
  18. Li, W.F., Liu, B., Peng, T., Yuan, Q.Q., Han, S.X., Tian, J.C. 2012. Detection of QTL for kernel weight, grain size, and grain hardness in wheat using DH and immortalized F2 population. Sci. Agric. Sin. 45:3453–3462.Google Scholar
  19. Lincoln, S.E., Daly, M.J., Lander, E.S. 1993. Constructing Genetic Maps with MAPMAKER/EXP Version 3.0: A Tutorial and Reference Manual. White Head Inst. Biomed. Res. Tech. Rpt, 3rd edn. White Head Institute for Biomedical Research. Cambridge, UK. 97 pp.Google Scholar
  20. Matsushima, S. 1966. Theory of yield determination and its application. Crop Sci. Rice 365:12–13.Google Scholar
  21. McCartney, C.A., Somers, D.J., Lukow, O., Ames, N., Noll, J., Cloutier, S., Humphreys, D.G., Mccallum, B.D. 2006. QTL analysis of quality in traits in the spring wheat cross RL4452×AC Domain. Plant Breed. 125:565–575.CrossRefGoogle Scholar
  22. McIntosh, R.A., Hart, G.E., Gale, M.D. 1994. Catalogue of gene symbols for wheat. Wheat Inf. Serv. 79:47–56.Google Scholar
  23. Shang, L.G., Wang, Y.M., Cai, S.H., Ma, L.L., Liu, F., Chen, Z.W., Su, Y., Wang, K.B., Hua, J.P. 2016. Genetic analysis of upland cotton dynamic heterosis for boll number per plant at multiple developmental stages. SCI REP-UK 6:35515.CrossRefGoogle Scholar
  24. Smith, A.M., Zeeman, S.C., Thorneycroft, D., Smith, S.M. 2003. Starch mobilization in leaves. J. Exp. Bot. 54:577–583.CrossRefGoogle Scholar
  25. Somers, D.J., Isaac, P., Edwards, K. 2004. A high-density micro-satellite consensus map for bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 109:1105–1114.CrossRefGoogle Scholar
  26. Sun, H.Y., Lu, J.H., Fan, Y.D., Zhao, Y., Kong, F., Li, R.J., Wang, H.G., Li, S.S. 2008. Quantitative trait loci (QTLs) for quality traits related to protein and starch in wheat. Prog. Nat. Sci. 18:825–831.CrossRefGoogle Scholar
  27. Voorrips, R.E. 2002. MapChart: software for the graphical presentation of linkage maps and QTLs. J. Hered. 93:77–78.CrossRefGoogle Scholar
  28. Wang, D.L., Zhu, J., Li, Z.K.L., Paterson, A.H. 1999. Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor. Appl. Genet. 99:1255–1264.CrossRefGoogle Scholar
  29. Wang, F., Sanz, A., Brenner, M.L., Smith, A. 1993. Sucrose synthase, starch accumulation, and tomato fruit sink strength. Plant Physiol. 101:321–327.CrossRefGoogle Scholar
  30. Wang, G., Zhao, Y., Yang, X.F., Li, X.Y., Yang, X.J. 2014. The circadian rhythm of flag leaf starch accumulation in wheat. J. Hebei Agric. Univ. 37:1–5.Google Scholar
  31. Weise, S.E., Weber, A.P.M., Sharkey, T.D. 2004. Maltose is the major form of carbon exported from the chloroplast at night. Planta 218:474–482.CrossRefGoogle Scholar
  32. Xu, H.Y., Zhao, J.S. 1995. Canopy photosynthesis capacity and the contribution from different organs in high yielding winter wheat. Sci. Agric. Sin. 21:204–209.Google Scholar
  33. Xu, Y.F., Li, S.S., Li, L.H., Ma, F.F., Fu, X.Y., Shi, Z.L., Xu, H.X., Ma, T.P., An, D.G. 2017. QTL mapping for yield and photosynthetic related traits under different water regimes in wheat. Mol. Breed. 37:1–18.CrossRefGoogle Scholar
  34. Zeeman, S.C., Smith, S.M., Smith, A.M. 2004. The breakdown of starch in leaves. New Phytol. 163:247–261.CrossRefGoogle Scholar
  35. Zeeman, S.C., Smith, S.M., Smith, A.M. 2007. The diurnal metabolism of leaf starch. Biochem. J. 401:13–28.CrossRefGoogle Scholar
  36. Zhang, H., Wang, H.G. 2015. QTL mapping for traits related to P-deficient tolerance using three related RIL populations in wheat. Euphytica 203:505–520.CrossRefGoogle Scholar
  37. Zhang, K.P., Zhao, L., Tian, J.C., Chen, G.F., Jiang, X.L., Liu, B. 2008. A genetic map constructed using a doubled haploid population derived from two elite Chinese common wheat varieties. J. Int. Plant Bio. 50:941–950.CrossRefGoogle Scholar
  38. Zhang, Z.H., Wu, X.Y., Shi, C.N., Wang, R.N., Li, S.F., Wang, Z.H., Liu, Z.H., Xue, Y.D., Tang, G.L., Tang, J.H. 2016. Genetic dissection of the maize kernel development process via conditional QTL mapping for three developing kernel-related traits in an immortalized F2 population. Mol. Genet. Genomics 291:437–457.CrossRefGoogle Scholar
  39. Zhao, L., Zhang, K.P., Liu, B., Deng, Z.Y., Qu, H.L., Tian, J.C. 2010. A comparison of grain protein content QTLs and flour protein content QTLs across environments in cultivated wheat. Euphytica 174:325–335.CrossRefGoogle Scholar
  40. Zhu, J. 1995. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics 141:1633–1639.PubMedPubMedCentralGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2018

Authors and Affiliations

  • Y. Zhao
    • 1
  • J. Wang
    • 1
  • R. L. Zhao
    • 1
  • X. Y. Li
    • 1
  • X. F. Yang
    • 1
  • S. H. Zhang
    • 1
  • J. C. Tian
    • 2
  • X. J. Yang
    • 1
    Email author
  1. 1.Huabei Key Laboratory of Crop GermplasmHebei Agricultural UniversityBaoding, HebeiChina
  2. 2.Shandong Agricultural UniversityTai’anChina

Personalised recommendations