Potential Use of Sicilian Landraces in Biofortification of Modern Durum Wheat Varieties: Evaluation of Caryopsis Micronutrient Concentrations

Abstract

The selection process has caused modern durum wheat cultivars to achieve higher yields with different protein quality but also to have low micronutrient amounts. In order to evaluate the suitability of germplasm for the recovery of such nutrient content, macro- and microelements concentrations in twelve ancient Sicilian durum wheat landraces and in three modern cultivars were compared. According to the results, the substantial differences in macro- and micro-element concentrations between the two groups of wheat genotypes suggest ancient Sicilian landraces can effectively represent a suitable genetic material for biofortification plans of micronutrients in modern varieties.

References

  1. Altieri, M.A. 2004. Linking ecologists and traditional farmers in the search for sustainable agriculture. Front. Ecol. Environ. 2:35–42.

    Article  Google Scholar 

  2. AOAC 2010. Official Method 960.52–1961: Microchemical Determination of Nitrogen. Association of Official Analytical Chemists Washington D.C., USA.

    Google Scholar 

  3. Badakhshan, H., Moradi, N., Mohammadzadeh, H., Zakeri, M.R. 2013. Genetic variability analysis of grains Fe, Zn and beta-carotene concentration of prevalent wheat varieties in Iran. Int. J. Agr. Crop. Sci. 6:57–62.

    CAS  Google Scholar 

  4. Boggini, G., Palumbo, M., Calcagno, F. 1990. Characterization and utilization of Sicilian landraces of durum wheat in breeding programmes. In: Srivastava, J.P., Damania, A.B. (eds), Wheat Genetic Resources: Meeting Diverse Needs. J. Wiley and Sons. Chichester, UK. pp. 223–234.

    Google Scholar 

  5. Cakmak, I., Ozkan, H., Braun, H.J., Welch, R.M., Romheld, V. 2000. Zinc and iron concentrations in seeds of wild, primitive and modern wheats. Food Nutr. Bull. 21:401–403.

    Article  Google Scholar 

  6. Cakmak, I., Pfeiffer, W.H., McClafferty, B. 2010. Biofortification of durum wheat with zinc and iron. Cereal Chem. 87:10–20.

    Article  CAS  Google Scholar 

  7. Dallman, P.R. 1987. Iron deficiency and the immune response. Am. J. Clin. Nutr. 46:329–334.

    Article  CAS  Google Scholar 

  8. De Vita, P., Mastrangelo, A.M., Matteu, L., Mazzucotelli, E., Virzì, N., Palumbo, M., Lo Storto, M., Rizza, F., Cattivelli, L. 2010. Genetic improvement effects on yield stability in durum wheat genotypes grown in Italy. Field Crops Res. 119:68–77.

    Article  Google Scholar 

  9. Distelfeld, A., Cacmak, I., Peleg, Z., Ozturk, L., Yazici, A.M., Budak, H., Saranga, Y., Fahima, T. 2007. Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentration. Physiol. Plant. 129:635–643.

    Article  CAS  Google Scholar 

  10. Gallo, G., Lo Bianco, M., Bognanni, R., Saimbene, G., Orlando, A., Grillo, O., Saccone, R., Venora, G. 2010. Durum wheat bread: Old Sicilian varieties and improved ones. J. Agr. Sci. Tech. 4:10–17.

    Google Scholar 

  11. Giacalone, A., Gianguzza, A., Orecchio, S., Piazzese, D., Dongarrà, G., Sciarrino, S., Varrica, D. 2005. Metals distribution in the organic and inorganic fractions of soil: a case study on soils from Sicily. Chem. Spec. Bioavailab. 17:83–93.

    Article  CAS  Google Scholar 

  12. Golden, M.H.N. 2004. Malnutrition. In: Guandalini, S. (ed.), Textbook of Pediatric Gastroenterology and Nutrition. Taylor & Francis. London, UK.

    Google Scholar 

  13. Gomez-Becerra, H.F., Erdem, H., Yazici, A., Tutus, Y., Torun, B., Ozturk, L., Cakmak, I. 2010a. Grain concentrations of protein and mineral nutrients in a large collection of spelt wheat grown under different environments. J. Cereal Sci. 52:342–349.

    Article  CAS  Google Scholar 

  14. Gomez-Becerra, H.F., Yazici, A., Ozturk, L., Budak, H., Peleg, Z., Morgounov, A., Fahima, T., Saranga, Y., Cakmak, I. 2010b. Genetic variation and environment stability of grain mineral nutrient concentrations in Triticum dicoccoides under five environments. Euphytica 171:39–52.

    Article  CAS  Google Scholar 

  15. Heidari, B., Padash, S., Dadkhodaie, A. 2016. Variations in micronutrients, bread quality and agronomic traits of wheat landrace varieties and commercial cultivars. Aust. J. Crop. Sci. 10:377–384.

    Article  CAS  Google Scholar 

  16. Hercberg, S., Galan, P., Dupin, H. 1987. Iron defciency in Africa. World Rev. Nutr. Diet. 54:201–236.

    Article  CAS  Google Scholar 

  17. IFPRI - International Food Policy Research Institute. 2014. Global Hunger Index. The Challenge of Hidden Hunger. http://www.ifpri.org [July 2015].

  18. Lafiandra, D., Riccardi, G., Shewry, P.R. 2014. Improving cereal grain carbohydrates for diet and health. J. Cereal Sci. 59:312–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lowe, N.M., Fekete, K., Decsi, T. 2009. Methods of assessment of zinc status in humans: a systematic review. Eur. J. Clin. Nutr. 89:2040S–2051S.

    CAS  Google Scholar 

  20. Lozoff, B., Jimenez, E., Xolf, A.W. 1991. Long term development outcome of infants with iron deficiency. New Eng. J. Med. 325:687–694.

    Article  CAS  Google Scholar 

  21. Mastromatteo, M., Danza, A., Lecce, L., Spinelli, S., Lampignano, V., Laverse, J., Conto, F., Del Nobile, M.A. 2014. Effect of durum wheat varieties on bread quality. Int. J. Food Sci. Tech. 49:72–81.

    Article  CAS  Google Scholar 

  22. Nishi, Y. 1996. Zinc and growth. J. Am. Coll. Nutr. 15:340–344.

    Article  CAS  Google Scholar 

  23. Padalino, L., Mastromatteo, M., Lecce, L., Spinelli, S., Contò, F., Del Nobile, M.A. 2014. Effect of durum wheat cultivars on physico-chemical and sensory properties of spaghetti. J. Sci. Food. Agric. 94:2196–2204.

    Article  CAS  Google Scholar 

  24. Palumbo, M., Blangiforti, S., Cambrea, M., Gallo, G., Licciardello, S., Spina, A. 2008. Sicilian durum wheat landraces for production of traditional breads. Proc. Int. Durum Wheat Symposium “From Seed to Pasta: The Durum Wheat Chain. Bologna, Italy. pp. 132–132.

    Google Scholar 

  25. Palumbo, M., Cambrea, M., Licciardello, S., Pandolfo, A., Pesce, A., Platania, A., Roccasalva, D., Russo, M., Sciacca, F., Spina, A., Virzì, N. 2013. Collezione di frumento duro in ambiente mediterraneo: germoplasma siciliano e internazionale (Durum wheat collection in Mediterranean environment: Sicilian and international germplasm). In: D’Andrea, F. (ed.), Conservazione biodiversità, gestione banche dati e miglioramento genetico – BIODATI (Conservation of biodiversity, data and gene bank). Rome, Italy. pp. 497–512.

    Google Scholar 

  26. Panatta, G.B. 1997. Cereali e patate (Cereals and potatoes). In: Fidanza, F., Liguori, G. (eds), Nutrizione Umana (Human nutrition). Idelson-Gnocchi. Neaples, Italy. pp. 268–289.

    Google Scholar 

  27. Poblaciones, M.J., Rodrigo, S., Santamaría, O., Chen, Y., McGrath, S.P. 2014. Agronomic selenium biofortification in Triticum durum under Mediterranean conditions: From grain to cooked pasta. Food Chem. 46:378–384.

    Article  CAS  Google Scholar 

  28. R Development Core Team 2008. R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria.

    Google Scholar 

  29. Rousseeuw, P.J. 1987. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20:53–65.

    Article  Google Scholar 

  30. Sandström, B. 1997. Bioavailability of zinc. Eur. J. Clin. Nutr. 51:S17–S19.

  31. Sciacca, F., Blanco, C., Salafia, L., Sgarlata, M.T., Di Silvestro, I., Palumbo, M. 2003. Genetic and biochemical characterization of durum wheat Sicilian landraces. Proc. Tenth Int. Wheat Genetics Symposium. Paestum, Italy. pp. 634–636.

    Google Scholar 

  32. Sciacca, F., Cambrea, M., Licciardello, S., Pesce, A., Romano, E., Spina, A., Virzì, N., Palumbo, M. 2014. Evolution of durum wheat: from Sicilian landraces to improved varieties. Options Méditerranéennes, serie A 110:139–145.

    Google Scholar 

  33. Scrimshaw, N.S. 1984. Functional consequences of iron deficiency in human populations. J. Nutr. Sci. Vitaminol. 30:47–63.

    Article  CAS  Google Scholar 

  34. Semenov, M.A., Stratonovitch, P., Alghabari, F., Gooding, M.J. 2014. Adapting wheat in Europe for climate change. J. Cereal Sci. 59:245–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shewry P.R. 2009. Wheat. J. Exp. Bot. 60:1537.

    Article  CAS  Google Scholar 

  36. Shewry, P.R., Halford, N.G. 2002. Cereal seed storage proteins: structures, properties and role in grain utilization. J. Exp. Bot. 53:947–958.

    Article  CAS  Google Scholar 

  37. Stewart, C.P., Dewey, K.G., Ashoran, P. 2009. The undernutrition epidemic: an urgent health priority. The Lancet 374:1473.

    Article  Google Scholar 

  38. Thomas, M., Demeulenaerev, E., Dawsonv, J.C., Rehman Khan, A., Galic, N., Jouanne-Pin, S., Remoué, C., Bonneuil, C., Goldringer, I. 2012. On-farm dynamic management of genetic diversity: the impact of seed diffusions and seed saving practices on a population-variety of bread wheat. Evol. Appl. 5:779–795.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Todeschini, R. 1988. Introduzione alla Chemiometria (Introduction to Chemometrics). EdiSES. Naples, Italy. pp. 37–79.

    Google Scholar 

  40. Velu, G., Ortiz-Monasterio, I., Cakmak, I., Hao, Y., Singh, R.P. 2014. Biofortification strategies to increase grain zinc and iron concentrations in wheat. J. Cereal Sci. 59:365–372.

    Article  CAS  Google Scholar 

  41. Wang, F., Wang, Z., Kou, C., Ma, Z., Zhao, D. 2016. Responses of wheat yield, macro- and micro-nutrients, and heavy metals in soil and wheat following the application of manure compost on the North China plain. PLoS ONE 11: e0146453. http://doi.org10.1371/journal.pone.0146453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Welch, R.M., Graham, R.D. 1999. A new paradigm for world agriculture: meeting human needs. Productive, sustainable, nutritious. Field Crops Res. 60:1–10.

    Article  Google Scholar 

  43. Wozniak, A., Makarski, B. 2013. Content of minerals, total protein and wet gluten in grain of spring wheat depending on cropping systems. J. Elem. 18:297–305.

    Google Scholar 

  44. Xu, Y., An, D., Li, H., Xu, H. 2011. Review: Breeding wheat for enhanced micronutrients. Can. J. Plant Sci. 91:231–237.

    Article  CAS  Google Scholar 

  45. Zhao, F.J., Su, Y.H., Dunham, S.J., Rakszegi, M., Bedo, Z., McGrath, S.P., Shewry, P.R. 2009. Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. J. Cereal Sci. 49:290–295.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the PON01_01145 “ISCOCEM” Project for the financial support. The authors also aknowledge Mr. Elia Premoli, for the valuable help provided in organizing the data set.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Brambilla.

Additional information

Communicated by F. Békés

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sciacca, F., Allegra, M., Licciardello, S. et al. Potential Use of Sicilian Landraces in Biofortification of Modern Durum Wheat Varieties: Evaluation of Caryopsis Micronutrient Concentrations. CEREAL RESEARCH COMMUNICATIONS 46, 124–134 (2018). https://doi.org/10.1556/0806.45.2017.056

Download citation

Keywords

  • Triticum turgidum
  • biodiversity
  • bioactive compounds
  • mineral concentration