Applicability of CAAT Box-derived Polymorphism (CBDP) Markers for Analysis of Genetic Diversity in Durum Wheat

Abstract

Progress in plant molecular tools has been resulted in the development of gene-targeted and functional marker systems. CAAT box region is a different pattern of nucleotides with a consensus sequence, GGCCAATCT, which situated upstream of the start codon of eukaryote genes and plays an important role during transcription. In the present study, several CAAT box-derived polymorphism (CBDP) primers were used for fingerprinting in mini-core collection of durum wheat (including internationally developed breeding lines and Iranian landraces). Twelve selected primers amplified 98 loci, of which all were polymorphic. The average values of the polymorphism information content (PIC) and resolving power (Rp) were 0.31 and 9.16, respectively, indicating a high level of variability among studied genotypes. Analysis of molecular variance (AMOVA) indicated that 92% of the total variation resided among populations. The values of the percentage polymorphic bands (PPL), the observed (Na) and effective (Ne) number of alleles, Nei’s gene diversity (He) and Shannon’s information index (I) for Iranian landraces were higher than the breeding lines. The Fandendrogram obtained by cluster analysis grouped all individuals into three main clusters. Our results showed a remarkable level of genetic diversity among studied durum wheat, especially among Iranian landraces, which can be interest for future breeding programs. More importantly, the present study also revealed that CBDP technique was efficient and powerful tool to assess genetic diversity in wheat germplasm. Hence, this technique could be employed individually or in combination with other molecular markers to evaluate genetic diversity and relations among different species.

References

  1. Alikhani, L., Rahmani, M.S., Shabanian, N., Badakhshan, H., Khadivi-Khub, A. 2014. Genetic variability and structure of Quercus brantii assessed by ISSR, IRAP and SCoT markers. Gene 552:176–183.

    CAS  Article  Google Scholar 

  2. Alsaleh, A., Shehzad Baloch, F., Nachit, M., Ozkan, H. 2016. Phenotypic and genotypic intra-diversity among Anatolian durum wheat “Kunduru” landraces. Biochem. Syst. Ecol. 65:9–16.

    CAS  Article  Google Scholar 

  3. Andersen, J.R., Lubberstedt, T. 2003. Functional markers in plants. Trends Plant. Sci. 8:554–560.

    CAS  Article  Google Scholar 

  4. Benoist, C., Ohare, K., Breathnach, R., Chambon, P. 1980. The ovalbumin gene-sequence of putative control regions. Nucleic Acids Res. 8:127–142.

    CAS  Article  Google Scholar 

  5. Collard, B.C.Y., Mackill, D.J. 2009. Conserved DNA-derived polymorphism (CDDP): a simple and novel method for generating DNA markers in plants. Plant. Mol. Biol. Report. 27:558–562.

    CAS  Article  Google Scholar 

  6. Doyle, J.J., Doyle, J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical. Bulletin 19:11–15.

    Google Scholar 

  7. Dumolin-Lapegue, S., Demesure, B., Fineschi, S., Le Corre, V., Petit, R.J. 1997. Phylogeographic structure of white oaks throughout the European continent. Genetics 146:1475–1487.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Etminan, A., Pour-Aboughadareh, A., Mohammadi, R., Ahmadi-Rad, A., Noori, A., Mahdavian, Z., Moradi, Z. 2016. Applicability of start codon targeted (SCoT) and inter-simple sequence repeat (ISSR) markers for genetic diversity analysis in durum wheat genotypes. Biotechnol. Biotec. Eq. 30:1075–1081.

    Article  Google Scholar 

  9. Guo, D.L., Zhang, J.Y., Liu, C.H. 2012. Genetic diversity in some grape varieties revealed by SCoT analyses. Mol. Biol. Rep. 39:5307–5313.

    CAS  Article  Google Scholar 

  10. Hamidi, H., Talebi, R., Keshavarz, F. 2014. Comparative efficiency of functional gene-based markers, start codon targeted polymorphism (SCoT) and conserved DNA-derived polymorphism (CDDP) with ISSR markers for diagnostic fingerprinting in wheat (Triticum aestivum L.). Cereal. Res. Commun. 42:558–567.

    CAS  Article  Google Scholar 

  11. Hamrick, J.L., Godt, M.J.W., Murawski, D.A., Loveless, M.D. 1991. Correlation between species traits and allozyme diversity: implications for conservation biology. In: Falk, D.A., Holsinger, K.E. (eds), Genetic and Conservation of Rare Plants. Oxford University Press. New York, USA. pp. 75–86.

    Google Scholar 

  12. Jaccard, P. 1908. New research on the floral distribution. Sci. Naturelles 44:223–270.

    Google Scholar 

  13. Jing, R., Vershinin, A., Grzebyta, J., Shaw, P., Smykal, P., Marshall, D., Ambrose, M.H., Ellis, T.H.N., Flavell, A.J. 2010. The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis. BMC Evol. Biol. 10:44.

    Article  Google Scholar 

  14. Mardi, M., Naghavi, M.R., Pirseyedi, S.M., Kazemi Alamooti, M., Rashidi Monfared, S., Ahkami, A.H., Omidbakhsh, M.A., Alavi, N.S., Salehi Shanjani, P., Katsiotis, A. 2011. Comparative assessment of SSAP, AFLP and SSR markers for evaluation of genetic diversity of durum wheat (Triticum turgidum L. var. durum). J. Agr. Sci. Tech. 13:905–920.

    Google Scholar 

  15. Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetic 89:583–590.

    CAS  Google Scholar 

  16. Peakall, R., Smouse, P.E. 2006. GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6:288–295.

    Article  Google Scholar 

  17. Poczai, P., Varga, I., Laos, M., Cseh, A., Bell, N., Valkonen, J.P. Hyvonen, J. 2013. Advances in plant gene-targeted and functional markers: a review. Plant. Methods. 9:1–31.

    Article  Google Scholar 

  18. Pour-Aboughadareh, A., Mohmoudi, M., Ahmadi, J., Moghaddam, M., Mehrabi, A.A., Alavikia, S.S. 2017. Agro-morphological and molecular variability in Triticum boeoticum accessions from Zagros Mountains, Iran. Genet. Resour. Crop. Evol. 64:545–556.

    Article  Google Scholar 

  19. Poursiahbidi, M., Pour-Aboughadareh, A., Tahmasebi, G., Seyedi, A, Jasemi, M. 2012. Factor analysis of agro-morphological characters in wheat (Triticum durum Def.) lines. Int. J. Agric. Crop. Sci. 23:1758–1762.

    Google Scholar 

  20. Poursiahbidi, M., Pour-Aboughadareh, A., Tahmasebi, G., Teymoori, M., Jasemi, M. 2013. Evaluation of genetic diversity and interrelationships of agro-morphological characters in durum wheat (Triticum durum desf.) lines using multivariate analysis. Intl. J. Agric. Res. Rev. 3:184–194.

    Google Scholar 

  21. Powell, W., Morgante, M., Andre, C., Hanafey, M.M., Vogel, J., Tingey, S., Rafalski, A. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed. 2:225–238.

    CAS  Article  Google Scholar 

  22. Que, Y., Pan, Y., Lu, Y., Cui, Y., Yuting, Y., Ning, H., Xu, L. 2014. Genetic analysis of diversity within a Chinese local sugarcane germplasm based on Start Codon Targeted Polymorphism. Bio. Med. Res. Int. ID 468375:1–10.

  23. Singh, A.K., Rana, M.K., Singh, S., Kumar, S., Kumar, R., Singh, R. 2014. CAAT box-derived polymorphism (CBDP): a novel promoter-targeted molecular marker for plants. J. Plant. Biochem. Biotechnol. 23:175–183.

    CAS  Article  Google Scholar 

  24. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731–2739.

    CAS  Article  Google Scholar 

  25. Wright, S. 1951. The genetical structure of populations. Ann. Eugen. 15:323–354.

    CAS  Article  Google Scholar 

  26. Yeh, F., Yang, R., Boyle, T. 1997. POPGENE, the user friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Center. University of Alberta, Edmonton.

    Google Scholar 

Download references

Acknowledgement

The authors are grateful to Kermanshah Branch, Islamic Azad University for hosting the lab facilities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Etminan.

Additional information

Communicated by A. Börner

Electronic Supplementary Material (ESM)

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Etminan, A., Pour-Aboughadareh, A., Mohammadi, R. et al. Applicability of CAAT Box-derived Polymorphism (CBDP) Markers for Analysis of Genetic Diversity in Durum Wheat. CEREAL RESEARCH COMMUNICATIONS 46, 1–9 (2018). https://doi.org/10.1556/0806.45.2017.054

Download citation

Keywords

  • durum wheat
  • genetic variability
  • CBDP
  • Iranian landraces