Cereal Research Communications

, Volume 45, Issue 4, pp 574–586 | Cite as

Assessment of Genetic Diversity among Iranian Triticum Germplasm Using Agro-morphological Traits and Start Codon Targeted (SCoT) Markers

  • A Pour-AboughadarehEmail author
  • J. Ahmadi
  • A. A. Mehrabi
  • A. Etminan
  • M. Moghaddam


The knowledge about genetic diversity in the wild relatives of wheat provides useful information for breeding programs and gene pool management. In the present study, an assessment of agro-morphological diversity and molecular variability among 70 accessions of Triticum, belonging to T. boeoticum, T. urartu, T. durum and T. aestivum species, collected from different regions of Iran was made. According to phenotypic analysis, all traits except peduncle length, stem diameter and the number of seeds per spike indicated a high level of diversity among studied accessions. Also, principal component analysis identified six components that explained 87.53% of the total variation in agro-morphological traits. In molecular analysis, 15 start codon targeted (SCoT) polymorphism primers produced 166 bands, out of which, 162 (97.59%) were polymorphic. Analysis of molecular variance (AMOVA) indicated the 63% of the variation resided among populations. The maximum value of polymorphism information content (PIC), the observed (Na) and effective (Ne) number of alleles, Nie’s gene diversity (He) and Shannon’s information index (I) was detected for T. boeoticum than the other species. The SCoT-based tree revealed three different groups corresponding to the genomic constitution in Triticum germplasm, which was in part confirmed by STRUCTURE and principal coordinate (PCoA) analyses. Our results indicated a remarkable level of genetic diversity among studied Iranian Triticum species, especially T. boeoticum, which can be of interest for future breeding and other analyses associated with future studies of the wild relatives of wheat. More importantly, our results revealed that SCoT markers could be used to accurate evaluate genetic diversity and phylogenetic relationships among different Triticum species.


Triticum genetic diversity SCoT structure analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2017_4504574_MOESM1_ESM.pdf (272 kb)
Assessment of Genetic Diversity among Iranian Triticum Germplasm using Agro-morphological Traits and Start Codon Targeted (SCoT) Markers


  1. Alsaleh, A., Shehzad Baloch, F., Nachit, M., Ozkan, H. 2016. Phenotypic and genotypic intra-diversity among Anatolian durum wheat “Kunduru” landraces. Biochem. Syst. Ecol. 65:9–16.CrossRefGoogle Scholar
  2. Bhattacharyya, P., Kumaria, S., Kumar, S., Tandon, P. 2013. Start codon targeted (SCoT) marker reveals genetic diversity of Dendrobium nobile Lindl., an endangered medicinal orchid species. Gene. 529:21–26.CrossRefGoogle Scholar
  3. Börner, A., Plaschke, J., Korzun, V., Worland, A. 1996. The relationships between the dwarfing genes of wheat and rye. Euphytica 89:69–75.CrossRefGoogle Scholar
  4. Collard, B.C.Y., Mackill, D.J. 2009. Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol. Biol. Rep. 27:86–93.CrossRefGoogle Scholar
  5. Doyle, J.J., Doyle, J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical. Bulletin 19:11–15.Google Scholar
  6. Dumolin-Lapegue, S., Demesure, B., Fineschi, S., Le Corre, V., Petit, R.J. 1997. Phylogeographic structure of white oaks throughout the European continent. Genetics 146:1475–1487.PubMedPubMedCentralGoogle Scholar
  7. Earl, D.A., von Holdt, B.M. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4:359–361.CrossRefGoogle Scholar
  8. Eticha, F., Bekele, E., Belay, G., Börner, A. 2005. Phenotypic diversity in durum wheat collected from Bale and Wello regions of Ethiopia. Plant. Genet. Resour. 3:35–43.CrossRefGoogle Scholar
  9. Etminan, A., Pour-Aboughadareh, A., Mohammadi, R., Ahmadi-Rad, A., Noori, A., Mahdavian, Z., Moradi, Z. 2016. Applicability of start codon targeted (SCoT) and inter-simple sequence repeat (ISSR) markers for genetic diversity analysis in durum wheat genotypes. Biotechnol. Biotec. Eq. 30:1075–1081.CrossRefGoogle Scholar
  10. Evanno, G., Regnaut, S., Goudet, J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14:2611–2620.CrossRefGoogle Scholar
  11. Gorji, A.M., Poczai, P., Polgar, Z., Taller, J. 2011. Efficiency of arbitrarily amplifed dominant markers (SCoT, ISSR and RAPD) for diagnostic fingerprinting in tetraploid potato. Am. J. Potato. Res. 88:226–237.CrossRefGoogle Scholar
  12. Hamidi, H., Talebi, R., Keshavarz, F. 2014. Comparative efficiency of functional gene-based markers, start codon targeted polymorphism (SCoT) and conserved DNA-derived Polymorphism (CDDP) with ISSR markers for diagnostic fingerprinting in wheat (Triticum aestivum L.). Cereal. Res. Commun. 42:558–567.CrossRefGoogle Scholar
  13. Hamrick, J.L., Godt, M.J.W., Murawski, D.A., Loveless, M.D. 1991. Correlation between species traits and allozyme diversity: implications for conservation biology. In: Falk, D.A., Holsinger, K.E. (eds), Genetic and Conservation of Rare Plants. Oxford University Press. New York, USA. pp. 75–86.Google Scholar
  14. Hurd, E.A. 1971. Techniques for measuring plant drought stress. In: Larson, K.L., Rachter, J.D. (eds), Drought Injury and Resistance in Crops. CSSA Special Publication II, Crop Science Society of America. Cambridge University Press. Madison, WI, USA. pp. 77–88.Google Scholar
  15. Hutchenson, K. 1970. A test for comparing diversities based on the Shannon formula. J. Theor. Biol. 29:151– 154.CrossRefGoogle Scholar
  16. IBPGR 1985. Revised Descriptor List for Wheat (Triticum spp.). International Board for Plant Genetic Resources. Rome, Italy.Google Scholar
  17. Moghaddam, M., Ehdaie, B., Waines, J.G. 1997. Genetic variation and interrelationships of agronomic characters in landraces of bread wheat from southeastern Iran. Euphytica 95:361–369.CrossRefGoogle Scholar
  18. Moradkhani, H., Pour-Aboughadareh, A., Mehrabi, A.A., Etminan, A. 2012. Evaluation of genetic relationships of Triticum–Aegilops species possessing D genome in different ploidy levels using microsatellites. Int. J. Agri. Crop. Sci. 23:1746–1751.Google Scholar
  19. Moradkhani, H., Mehrabi, A.A., Etminan, A., Pour-Aboughadareh, A. 2015. Molecular diversity and phylogeny of Triticum-Aegilops species possessing D genome revealed by SSR and ISSR markers. Plant. Breed. Seed. Sci. 71:82–95.Google Scholar
  20. Naghavi, M., Malaki, M., Alizadeh, H., Pirseiedi, M., Mardi, M. 2010. An assessment of genetic diversity in wild diploid wheat Triticum boeoticum from west of Iran using RAPD, AFLP and SSR markers. J. Agr. Sci. Tech. 11:585–598.Google Scholar
  21. Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetic 89:583–590.Google Scholar
  22. Pathak, N.N., Nema, D.P. 1985. Genetic advance in landrace of wheat. Indian. J. Agri. Sci. 55:478–479.Google Scholar
  23. Peakall, R., Smouse, P.E. 2006. GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol. Ecol. Notes. 6:288–295.Google Scholar
  24. Perrier, X., Flori, A., Bonnot, F. 2003. Data analysis methods. In: Hamon, P., Seguin, M., Perrier, X., Glaszmann, J.C. (eds), Genetic Diversity of Cultivated Tropical Plants. London, Plymouth, UK. pp. 43–76.Google Scholar
  25. Poczai, P., Varga, I., Laos, M., Cseh, A., Bell, N., Valkonen, J.P. Hyvonen, J. 2013. Advances in plant genetargeted and functional markers: a review. Plant. Methods 9:1–31.CrossRefGoogle Scholar
  26. Pour-Aboughadareh, A., Mohmoudi, M., Ahmadi, J., Moghaddam, M., Mehrabi, A.A., Alavikia, S.S. 2017. Agro-morphological and molecular variability in Triticum boeoticum accessions from Zagros Mountains, Iran. Genet. Resour. Crop. Evol. 64:545–556.CrossRefGoogle Scholar
  27. Powell, W., Morgante, M., Andre, C., Mm, Hanafey, Vogel, J., Tingey, S., Rafalski, A. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed. 2:225–238.CrossRefGoogle Scholar
  28. Pritchard, J.K., Stephens, M., Donnelly, P. 2000. Inference of population structure using multilocus genotype data. Genetics 155:945–959.PubMedPubMedCentralGoogle Scholar
  29. Rajesh, M.K., Sabana, A.A., Rachana, K.E., Rahman, S., Jerard, B.A., Karun, A. 2015. Genetic relationship and diversity among coconut (Cocos nucifera L.) accessions revealed through SCoT analysis. 3 Bitech. 5:999–1006.Google Scholar
  30. Rawashdeh, N.K., Haddad, N.I., Al-Ajlouni, M.M., Turk, M.A. 2007. Phenotypic diversity of durum wheat (Triticum durum Desf.) from Jordan. Genet. Resour. Crop. Evol. 54:129–138.CrossRefGoogle Scholar
  31. Rholf, F. 2000. Numerical Taxonomy and Multivariate Analysis System: version 2.10. Exeter Software, Setauket. New York, USA.Google Scholar
  32. Salimi, A., Ebrahimzadeh, H., Taeb, M. 2005. Description of Iranian diploid wheat resources. Genet. Resour. Crop. Evol. 52:351–361.CrossRefGoogle Scholar
  33. van Slageren, M.W. 1994. Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen Agricultural University Papers. Wageningen, The Netherlands.Google Scholar
  34. Wolfinger, R.D., Federer, W.T., Cordero-Brana, O. 1997. Recovering information in augmented designs, using SAS PROC GLM and PROC MIXED. Agron. J. 89:856–859.CrossRefGoogle Scholar
  35. Wright, S. 1951. The genetical structure of populations. Ann. Eugen. 15:323–354.CrossRefGoogle Scholar
  36. Xiong, F., Zhong, R., Han, Z., Jiang, J., He, L., Zhuang, W., Tang, R. 2011. Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) varieties. Mol. Biol. Rep. 38:3487–3494.CrossRefGoogle Scholar
  37. Yeh, F., Yang, R., Boyle, T. 1997. POPGENE, the User Friendly Shareware for Population Genetic Analysis. Molecular Biology and Biotechnology Center. University of Alberta. Edmonton, Canada.Google Scholar
  38. Zhang, Z., Gao, J., Kong, D., Wang, A., Tang, S., Li, Y., Pang, X. 2015. Assessing genetic diversity in Ziziphus jujubaJinsixi-aozao’ using morphological and microsatellite (SSR) markers. Biochem. Syst. Ecol. 61:196–202.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2017

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • A Pour-Aboughadareh
    • 1
    Email author
  • J. Ahmadi
    • 1
  • A. A. Mehrabi
    • 2
  • A. Etminan
    • 3
  • M. Moghaddam
    • 4
  1. 1.Department of Crop Production and BreedingImam Khomeini International UniversityQazvinIran
  2. 2.Department of Agronomy and Plant breedingUniversity of IlamIlamIran
  3. 3.Department of Plant breeding, Kermanshah BranchIslamic Azad UniversityKermashahIran
  4. 4.Department of Plant Breeding and BiotechnologyUniversity of TabrizTabrizIran

Personalised recommendations