Advertisement

Cereal Research Communications

, Volume 45, Issue 3, pp 478–487 | Cite as

Conditional Quantitative Trait Locus Mapping of Wheat Seed Protein-fraction in Relation to Starch Content

  • Y. Zhao
  • X. Y. Li
  • X. Y. Ju
  • S. H. Zhang
  • J. C. Tian
  • X. J. YangEmail author
Open Access
Article

Abstract

Protein and starch are important in wheat quality and yield. To understand the genetic relationship between protein and starch at the quantitative trait locus (QTL)/gene level, 168 doubled haploid (DH) lines were used at three locations over 2 years. The QTLs for proteinfraction contents and starch content were analyzed by unconditional and conditional QTL mapping. We detected 17 unconditional additive QTLs (four albumin QTLs, three globulin QTLs, six gliadin QTLs, four glutenin QTLs) controlling protein-fraction contents. We detected 19 conditional QTLs (five albumin QTLs, three globulin QTLs, five gliadin QTLs, six glutenin QTLs) based on starch content. Of these QTLs, QAlu1B, QGlo6A, QGli1B, QGli7A, QGlu1B and QGlu1D increased the protein-fraction contents independent of the starch content. These QTLs could regulate the usual inverse relationship between protein and starch in wheat seeds. The results could possibly be used in the simultaneous improvement of grain protein and starch content in wheat breeding.

Keywords

wheat (Triticum asetivum L.) protein-fraction contents starch content unconditional QTL conditional QTL 

Supplementary material

42976_2017_4503478_MOESM1_ESM.pdf (677 kb)
Conditional Quantitative Trait Locus Mapping of Wheat Seed Protein-fraction in Relation to Starch Content

References

  1. Branlard, G., Dardevet, M.1985. Diversity of grain protein and bread wheat quality: II. Correlation between high molecular weight subunits of glutenin and flour quality characteristics. J. Cereal Sci. 3:345–354.CrossRefGoogle Scholar
  2. Charmet, G., Robert, N., Branlard, G., Linossier, L., Martre, P., Triboï, E. 2005. Genetic analysis of dry matter and nitrogen accumulation and protein composition in wheat kernels. Theor. Appl. Genet. 111:540–550.PubMedCrossRefGoogle Scholar
  3. Cheng, X.X., Cheng, J.P., Huang, X., Lai, Y.Y., Wang, L., Du, W.L., Wang, Z.F., Zhang, H.S. 2013. Dynamic quantitative trait loci analysis of seed reserve utilization during three germination stages in rice. Plos One 8:e80002.PubMedPubMedCentralCrossRefGoogle Scholar
  4. George, L., Scott, B. 1995. Separation and characterization of wheat protein fractions by high-performance capillary electrophoresis 1. Cereal Chem. 72:527–532.Google Scholar
  5. Guo, C.Q., Bai, Z.A., Liao, P.A., Jin, W.K. 2004. New high quality and yield wheat variety Yumai 57. China Seed Ind. 4:54.Google Scholar
  6. Han, Y.P., Xie, D.W., Teng, W.L., Zhang, S.Z., Chang, W., Li, W.B. 2011. Dynamic QTL analysis of linolenic acid content in different developmental stages of soybean seed. Theor. Appl. Genet. 122:1481–1488.PubMedCrossRefGoogle Scholar
  7. Hai, Y., Kang, M.H. 2007. Breeding of a new wheat variety Huapei 3 with high yield and early maturity. Henan Agr. Sci. China 5:36–37.Google Scholar
  8. Holm, J., Bjorck, I., Drews, A. 1986. A rapid method for the analysis of starch. Food Chem. 38:224–226.Google Scholar
  9. Huebner, F.R., Wall, J.S. 1976. Fractionation and quantitative differences of glutenin from wheat varieties varying in baking quality. Cereal Chem. 53:258–269.Google Scholar
  10. Hurkman, W.J., McCue, K.F., Altenbach, S.B., Korn, A., Tanaka, C.K., Kothari, K.M., Johnson, E.L., Bechtel, D.B., Wilson, J.D., Anderson, O.D., DuPont, F.M. 2003. Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Sci. 164:873–881.CrossRefGoogle Scholar
  11. Jenner, C. 1994. Starch synthesis in the kernel of wheat under high temperature conditions. Funct. Plant Biol. 21:791–806.CrossRefGoogle Scholar
  12. Jiang, P., Wan, Z.Y., Wang, Z.X., Li, S.S., Sun, Q.Q. 2013. Dynamic QTL analysis for activity of antioxidant enzymes and malondialdehyde content in wheat seed during germination. Euphytica 190:75–85.CrossRefGoogle Scholar
  13. Jiang, Z.F., Han, Y.P., Teng, W.L., Zhang, Z.C., Sun, D.S., Li, Y.H., Li, W.B. 2010. Identification of QTL underlying the filling rate of protein at different developmental stages of soybean seed. Euphytica 175:227–236.CrossRefGoogle Scholar
  14. Lasztity, R. 1984. Wheat Proteins. The Chemistry of Cereal Proteins. Boca Raton, FL, USA. pp. 73–89.Google Scholar
  15. Li, W.F., Liu, B., Peng, T., Yuan, Q.Q., Han, S.X., Tian, J.C. 2012. Detection of QTL for kernel weight, grain size, and grain hardness in wheat using DH and immortalized F2 population. Agric. Sci. China 45:3453– 3462.Google Scholar
  16. Lian, X.J., Guo, J.J., Wang, D.L., Li, L., Zhu, J.R. 2014. Effects of protein in wheat flour on retrogradation of wheat starch. J. Food Sci. 79:1505–1511.CrossRefGoogle Scholar
  17. Liu, G., Xu, S.B., Ni, Z.F., Xie, C.J., Qin, D.D., Li, J., Lu, L.H., Zhang, J.P., Peng, H.R., Sun, Q.X. 2011. Molecular dissection of plant height QTLs using recombinant inbred lines from hybrids between common wheat (Triticum aestivum L.) and spelt wheat (Triticum spelta L.). Chinese Sci. Bull. 56:1897–1903.CrossRefGoogle Scholar
  18. Liu, G.F., Yang, J., Xu, H.M., Hayat, Y., Zhu, J. 2008. Genetic analysis of grain yield conditioned on its component traits in rice (Oryza sativa L.). Aust. J. Agr. Res. 59:180–195.Google Scholar
  19. Liu, J.P., Van Eck, J., Cong, B., Tanksley, S.D. 2002. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. P. Natl Acad. Sci. USA 99:13302–13306.CrossRefGoogle Scholar
  20. MacRitchie, F. 1992. Physicochemical properties of wheat proteins in relation to functionality. Adv. Food Nutr. Res. 36:1–87.CrossRefGoogle Scholar
  21. Mann, G., Diffey, S., Cullis, B., Azanza, F., Martin, D., Kelly, A., McIntyre, L., Schmidt, A., Ma, W., Nath, Z., Kutty, I., Leyne, P.E., Rampling, L., Quail, K.J., Morell, M.K. 2009. Genetic control of wheat quality: interactions between chromosomal regions determining protein content and composition, dough rheology, and sponge and dough baking properties. Theor. Appl. Genet. 118:1519–1537.PubMedCrossRefGoogle Scholar
  22. Martin, J.M., Talbert, L.E, Habernicht, D.K., Lanning, S.P., Sherman, J.D., Carlson, G., Giroux, M.J. 2004. Reduced amylose effects on bread and white salted noodle quality. Cereal Chem. 81:188–193.CrossRefGoogle Scholar
  23. McIntosh, R.A., Hart, G.E., Gale, M.D. 1994. Catalogue of gene symbols for wheat. Wheat Inf. Serv. 79:47–56.Google Scholar
  24. Merlino, M., Leroy, P., Chambon, C., Branlard, G. 2009. Mapping and proteomic analysis of albumin and globulin proteins in hexaploid wheat kernels (Triticum aestivum L.). Theor. Appl. Genet. 118:1321–1337.PubMedCrossRefGoogle Scholar
  25. Osborne, T.B. 1907. The Protein of the Wheat Kernel. Publication of the Carnegie Institute. Washington, USA.CrossRefGoogle Scholar
  26. Osman, K.A., Tang, B., Wang, Y.P., Chen, J.H., Yu, F., Liu, L., Han, X.S., Zhang, Z.X., Yan, J.B., Zheng, Y.L., Yue, B., Qiu, F.Z. 2013. Dynamic QTL analysis and candidate gene mapping for waterlogging tolerance at maize seedling stage. Plos One 8:e79305.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Pence, J.W., Weinstein, N.E., Mecham, D.K. 1954. The albumin and globulin contents of wheat flour and their relationship to protein quality. Cereal Chem. 31:303–311.Google Scholar
  28. Pike, P.R., MacRitchie, F. 2004. Protein composition and quality of some new hard white winter wheats. Crop Sci. 44:173–176.CrossRefGoogle Scholar
  29. Shi, P.C., Cao, L.P., Wang, G.L., Zhang, W. 2008. Mapping QTLs related to protein components of grain of common wheat. J. Trit. Crops 28:550–554.Google Scholar
  30. Singh, J., Skerritt, J.H. 2001. Chromosomal control of albumins and globulins in wheat grain assessed using different fractionation procedures. J. Cereal Sci. 33:163–181.CrossRefGoogle Scholar
  31. Somers, D.J., Isaac, P., Edwards, K. 2004. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 109:1105–1114.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Song, X.J., Huang, W., Shi, M., Zhu, M.Z., Lin, H.X. 2007. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet. 39:623–630.PubMedCrossRefGoogle Scholar
  33. Wang, L., Cui, F., Wang, J.P., Jun, L., Ding, A.M., Zhao, C.N., Li, X.F., Feng, D.S., Gao, J.R., Wang, H.G. 2012. Conditional QTL mapping of protein content in wheat with respect to grain yield and its components. J. Genet. 91:303–312.PubMedCrossRefGoogle Scholar
  34. Weegels, P.L., Hamer, R.J., Schofield, J.D. 1996. Functional properties of wheat glutenin. J. Cereal Sci. 23: 1–18.CrossRefGoogle Scholar
  35. Wen, Y.X., Zhu, J. 2005. Multivariable conditional analysis for complex trait and its components. Acta Genet. Sin. 32:289–296.PubMedPubMedCentralGoogle Scholar
  36. Wieser, H. 2007. Chemistry of gluten proteins. Food Microbiol. 24:115–119.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Yamamori, M., Quynh, N.T. 2003. Diversity effects of Wx-A1, -B1 and -D1 protein deficiencies on apparent amylose content and starch pasting properties in common wheat. Theor. Appl. Genet. 100:32–38.CrossRefGoogle Scholar
  38. Yamamori, M. 2009. Amylose content and starch properties generated by five variant Wx alleles for granule-bound starch synthase in common wheat (Triticum aestivum L.). Euphytica 165:607–614.CrossRefGoogle Scholar
  39. Ye, Z.H., Lu, Z.Z., Zhu, J. 2003. Genetic analysis for developmental behavior of some seed quality traits in upland cotton (Gossypum hirsutum L.). Euphytica 129:183–191.CrossRefGoogle Scholar
  40. Zhang, K.P., Zhao, L., Tian, J.C., Chen, G.F., Jiang, X.L., Liu, B. 2008. A genetic map constructed using a doubled haploid population derived from two elite Chinese common wheat varieties. J. Integr. Plant Biol. 50:941–950.PubMedCrossRefGoogle Scholar
  41. Zhang, Y., Tang, J.W., Yan, J., Zhang, Y.L., Zhang, Y., Xia, X.C., He, Z.H. 2009. The gluten protein and interactions between components determine mixograph properties in an F6 recombinant inbred line population in bread wheat. J. Cereal Sci. 50:219–226.CrossRefGoogle Scholar
  42. Zhang, Y., Tang, J.W., Zhang, Y.L., Yan, J., Xiao, Y.G., Zhang, Y., Xia, X.C., He, Z.H. 2011. QTL mapping for quantities of protein fractions in bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 122:971–987.PubMedCrossRefGoogle Scholar
  43. Zhao, J.Y., Becker, H.C., Zhang, D.Q., Zhang, Y.F., Ecke, W. 2006. Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor. Appl. Genet. 113:33–38.PubMedCrossRefGoogle Scholar
  44. Zhao, L., Zhang, K.P., Liu, B., Deng, Z.Y., Qu, H.L., Tian, J.C. 2010. A comparison of grain protein content QTLs and flour protein content QTLs across environments in cultivated wheat. Euphytica 174:325–335.CrossRefGoogle Scholar
  45. Zhu, J. 1995. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics 141:1633–1639.PubMedPubMedCentralGoogle Scholar
  46. Zhu, Z.L., Liu, B., Tian, B., Xie, Q.G., Li, W.F., Tian, J.C. 2011. Dynamic QTL mapping of wheat protein content in developing grains. Agr. Sci. China 44:3078–3085.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2017

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Y. Zhao
    • 1
  • X. Y. Li
    • 1
  • X. Y. Ju
    • 1
  • S. H. Zhang
    • 1
  • J. C. Tian
    • 2
  • X. J. Yang
    • 1
    Email author
  1. 1.Huabei Key Laboratory of Crop GermplasmHebei Agricultural UniversityBaoding, HebeiChina
  2. 2.Shandong Agricultural UniversityTai’anChina

Personalised recommendations