Cereal Research Communications

, Volume 45, Issue 3, pp 369–380 | Cite as

TaMYB3, Encoding a Functional MYB Transcriptor, Isolated from the Purple Pericarp of Triticum aestivum

  • N. Li
  • Y. Zong
  • B. L. LiuEmail author
  • W. J. Chen
  • B. Zhang


Purple pericarp is an interesting and useful trait in Triticum aestivum, but the molecular mechanism behind this phenotype remains unclear. The allelic variation in the MYB transcriptors is associated with the phenotype of pigmented organs in many plants. In this study, a MYB transcription factor gene, TaMYB3, was isolated using homology-based cloning and a differentially expressed gene mining approach, to verify the function of the MYB transcriptor in the purple pericarp. The coding sequence of TaMYB3 in cultivar Gy115 was the same as that in cultivar Opata. TaMYB3 was localized to FL0.62–0.95 on chromosome 4BL. The TaMYB3 protein contains DNA-binding and transcription-activation domains, and clustered on a phylogenetic tree with the MYB proteins that regulates anthocyanin and proanthocyanin biosynthesis. TaMYB3 localized in the nuclei of Arabidopsis thaliana and wheat protoplasts after it was transiently expressed with PEG transformation. TaMYB3 induced anthocyanin synthesis in the pericarp cells of Opata in the dark in collaboration with the basic helix–loop–helix protein ZmR, which is also the function of ZmC1. However, TaMYB3 alone did not induce anthocyanin biosynthesis in the pericarp cells of the white grain wheat cultivar Opata in the light after bombardment, whereas the single protein ZmR did. Light increased the expression of TaMYB3 in the pericarp of Gy115 and Opata, but only induced anthocyanin biosynthesis in the grains of Gy115. Our results extend our understanding of the molecular mechanism of the purple pericarp trait in T. aestivum.


MYB transcriptor purple pericarp anthocyanin biosynthesis Triticum aestivum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2017_4503369_MOESM1_ESM.pdf (197 kb)
TaMYB3, Encoding a Functional MYB Transcriptor, Isolated from the Purple Pericarp of Triticum aestivum


  1. Ahmed, N., Maekawa, M., Utsugi, S., Himi, E., Ablet, H., Rikiishi, K., Noda, K. 2003. Transient expression of anthocyanin in developing wheat coleoptile by maize C1 and B-peru regulatory genes for anthocyanin synthesis. Breed. Sci. 53:29–34.CrossRefGoogle Scholar
  2. Baublis, A.J., Lu, C.R., Clydesdale, F.M., Decker, E.A. 2000. Potential of wheat-based breakfast cereals as a source of dietary antioxidants. J. Am. Coll. Nutr. 19:308–311.CrossRefGoogle Scholar
  3. Borevitz, J.O., Xia, Y., Blount, J., Dixon, R.A., Lamb, C. 2000. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12:2383–2394.CrossRefGoogle Scholar
  4. Broun, P. 2005. Transcriptional control of flavonoid biosynthesis: a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis. Curr. Opin. Plant Biol. 8:272–279.CrossRefGoogle Scholar
  5. Cone, K.C., Burr, F.A., Burr, B. 1986. Molecular analysis of the maize anthocyanin regulatory locus C1. Proc. Natl Acad. Sci. USA 83:9631–9635.CrossRefGoogle Scholar
  6. Dunlop, D.S., Curtis, W.R. 1991. Synergistic response of plant hairy-root cultures to phosphate limitation and fungal elicitation. Biotechnol. Prog. 7:434–438.CrossRefGoogle Scholar
  7. Endo, T.R., Gill, B.S. 1996. The deletion stocks of common wheat. J. Hered. 87:295–307.CrossRefGoogle Scholar
  8. Gion, K., Suzuri, R., Ishiguro, K., Katsumoto, Y., Tsuda, S., Tanaka, Y., Mouradova, E., Brugliera, F., Chandler, S. 2012. Genetic engineering of floricultural crops: Modification of flower colour, flowering and shape. Acta Hort. 953:209–216.CrossRefGoogle Scholar
  9. Gordeeva, E.I., Shoeva, O.Y., Khlestkina, E.K. 2015. Marker-assisted development of bread wheat near-isogenic lines carrying various combinations of purple pericarp (Pp) alleles. Euphytica 203:469–476.CrossRefGoogle Scholar
  10. Griffin, W.B. 1987. Outcrossing in New Zealand wheats measured by occurrence of purple grain. New Zealand J. Agric. Res. 30:287–290.CrossRefGoogle Scholar
  11. Grotewold, E., Sainz, M.B., Tagliani, L., Hernandez, J.M., Bowen, B., Chandler, V.L. 2000. Identification of the residues in the Myb domain of maize C1 that specify the interaction with the bHLH cofactor R. Proc. Natl. Acad. Sci. USA 97:13579–13584.CrossRefGoogle Scholar
  12. Himi, E., Maekawa, M., Miura, H., Noda, K. 2011. Development of PCR markers for Tamyb10 related to R-1, red grain color gene in wheat. Theor. Appl. Genet. 122:1561–1576.CrossRefGoogle Scholar
  13. Himi, E., Taketa, S. 2015. Isolation of candidate genes for the barley Ant1 and wheat Rc genes controlling anthocyanin pigmentation in different vegetative tissues. Mol. Genet. Genomics 290:1287–1298.CrossRefGoogle Scholar
  14. Huang, Y.J., Song, S., Allan, A.C., Liu, X.F., Yin, X.R., Xu, C.J., Chen, K.S. 2013. Differential activation of anthocyanin biosynthesis in Arabidopsis and tobacco over-expressing an R2R3 MYB from Chinese bay-berry. Plant Cell Tiss. Org. Cult. 113:491–499.CrossRefGoogle Scholar
  15. Joppa, L.R., Williams, N.D. 1988. Langdon durum disomic substitution lines and aneuploid analysis in tetraploid wheat. Genome 30:222–228.CrossRefGoogle Scholar
  16. Khlestkina, E.K. 2013. Genes determining the coloration of different organs in wheat. Russ. J. Genet. Appl. Res. 3:54–65.CrossRefGoogle Scholar
  17. Khlestkina, E.K., Pestsova, E.G., Röder, M.S., Börner, A. 2002. Molecular mapping, phenotypic expression and geographical distribution of genes determining anthocyanin pigmentation of coleoptiles in wheat (Triticum aestivum L.). Theor. Appl. Genet. 104:632–637.CrossRefGoogle Scholar
  18. Khlestkina, E.K., Röder, M.S., Börner, A. 2010. Mapping genes controlling anthocyanin pigmentation on the glume and pericarp in tetraploid wheat (Triticum durum L.). Euphytica 171:65–69.CrossRefGoogle Scholar
  19. Kobayashi, S., Yamamoto, N.G., Hirochika, H. 2005. Association of VvmybA1 gene expression with anthocyanin production in grape (Vitis vinifera) skin – color mutants. J. Jap. Soc. Hort. Sci. 74:196–203.CrossRefGoogle Scholar
  20. Koes, R., Verweij, W., Quattrocchio, F. 2005. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci. 10:236–242.CrossRefGoogle Scholar
  21. Liu, D., Li, S., Chen, W., Zhang, B., Liu, D., Liu, B., Zhang, H. 2016. Transcriptome analysis of purple pericarps in common wheat (Triticum aestivum L.). PLoS One 11: e0155428.CrossRefGoogle Scholar
  22. Mano, H., Ogasawara, F., Sato, K., Higo, H., Minobe, Y. 2007. Isolation of a regulatory gene of anthocyanin biosynthesis in tuberous roots of purple-fleshed sweet potato. Plant Physiol. 143:1252–1268.CrossRefGoogle Scholar
  23. Peel, G.J., Pang, Y.Z., Modolo, L.V., Dixon, R.A. 2009. The LAP1 MYB transcription factor orchestrates anthocyanidin biosynthesis and glycosylation in Medicago. Plant J. 59:136–149.CrossRefGoogle Scholar
  24. Quattrocchio, F., Wing, J., van der Woude, K., Souer, E., de Vetten, N., Mol, J., Koes, R. 1999. Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color. Plant Cell 11:1433–1444.CrossRefGoogle Scholar
  25. Saitoh, K., Onishi, K., Mikami, I., Thidar, K., Sano, Y. 2004. Allelic diversification at the C (OsC1) locus of wild and cultivated rice. Genetics 168:997–1007.CrossRefGoogle Scholar
  26. Sheen, J. 2002. A transient expression assay using Arabidopsis mesophyll protoplasts. Dept. Mol. Biol., Mass. Gen. Hosp., Boston, MA. Scholar
  27. Shoeva, O.Y., Gordeeva, E.I., Khlestkina, E.K. 2014. The regulation of anthocyanin synthesis in the wheat pericarp. Molecules 19:20266–20279.CrossRefGoogle Scholar
  28. Tamura, K., Dudley, J., Nei, M., Kumar, S. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596–1599.CrossRefGoogle Scholar
  29. Tereshchenko, O.Y., Gordeeva, E.I., Arbuzova, V.S., Börner, A., Khlestkina, E.K. 2012. The D genome carries a gene determining purple grain colour in wheat. Cereal Res. Commun. 40:334–341.CrossRefGoogle Scholar
  30. Wang, H.W., Wang, Z.L., Wang, P., Wang, S.G., Huang, W., Wu, Y.G., Sun, L.Z., Yin, Y.P. 2011. Effect of shading post anthesis on anthocyanin accumulation and activities of related enzymes in colored-grain wheat. Acta Agron. Sin. 37:1093–1100 (in Chinese with English abstract).CrossRefGoogle Scholar
  31. Wang, Y.Q., Hou, X.J., Zhang, B., Chen, W.J., Liu, D.C., Liu, B.L., Zhang, H.G. 2016. Identification of a candidate gene for Rc-D1, a locus controlling red coleoptile colour in wheat. Cereal Res. Commun. 44:35–46.CrossRefGoogle Scholar
  32. Wei, Y.L., Li, J.N., Lu, J., Tang, Z.L., Pu, D.C., Chai, Y.R. 2007. Molecular cloning of Brassica napus TRANSPARENT TESTA 2 gene family encoding potential MYB regulatory proteins of proanthocyanidin biosynthesis. Mol. Biol. Rep. 34:105–120.CrossRefGoogle Scholar
  33. Xu, W., Dubos, C., Lepiniec, L. 2015. Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes. Trends Plant Sci. 20:176–185.CrossRefGoogle Scholar
  34. Yoo, S.D., Cho, Y.H., Sheen, J. 2007. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nat. Protoc. 2:1565–1575.CrossRefGoogle Scholar
  35. Zeven, A.C. 1991. Wheats with purple and blue grains: a review. Euphytica 56:243–258.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2017

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • N. Li
    • 1
    • 2
  • Y. Zong
    • 1
    • 3
  • B. L. Liu
    • 1
    Email author
  • W. J. Chen
    • 1
    • 4
  • B. Zhang
    • 1
    • 4
  1. 1.Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau BiologyChinese Academy of SciencesQinghai Xining 810008China
  2. 2.Qinghai UniversityQinghai Xining 810014China
  3. 3.University of Chinese Academy of SciencesBeijing 100049China
  4. 4.Qinghai Province Key Laboratory of Crop Molecular BreedingXining 810008China

Personalised recommendations