Physiological Response of Late Sown Wheat to Exogenous Application of Silicon

Abstract

Late planting of wheat in rice-wheat cropping system is perhaps one of the major factors responsible for low crop yield. The main cause of reduction in yield is due to supra-optimal conditions during the reproductive growth. High temperature during reproductive phase induces changes in water relations, decreases photosynthetic rate, and transpiration rate, stomatal conductance and antioxidative defence system. Silicon (Si), being a beneficial nutrient not only provides significant benefits to plants growth and development but may also mitigate the adversities of high temperature. A field study was conducted at Agronomic Research Area of University of Agriculture; Faisalabad, Pakistan to assess the performance of late sown wheat with the soil applied Si. Experiment was comprised of three sowing dates; 10th Nov (normal), 10th Dec (late), 10th Jan (very late) with two wheat varieties (Sehar-2006 and Faisalabad-2008), and an optimized dose of Si (100 mg per kg soil), applied at different growth stages (control, crown root, booting and heading). Results indicated that 100 mg Si per kg soil at heading stage offset the negative impact of high temperature and induced heat tolerance in late sown wheat. Silicon application improved 34% relative water contents (RWC), 30% water potential, 26% osmotic potential, 23% turgor potential and 21% photosynthetic rate, and 32% transpiration rate and 20% stomatal conductance in wheat flag leaf than control treatment. Further it was observed that Si application preventing the oxidative membrane damage due to enhanced activity of antioxidant enzymes, i.e. 35% superoxide dismutase (SOD) and 38% catalase (CAT). In conclusion results of this field study demonstrated that soil applied Si (100 mg per kg soil) at heading stage enhanced all physiological attributes of wheat flag leaf. Which in turn ameliorated the adverse effects of high temperature in late sown wheat. Study depicted that Si can be used as a potential nutrient in order to mitigate the losses induced by high temperature stress.

References

  1. Agarie, S., Uchida, H., Agata, W., Kubota, F., Kaufman, P.B. 1998. Effects of silicon on transpiration and leaf conductance in rice plants (Oryza sativaL.). Plant Prod. Sci. 1:89–95.

    Article  Google Scholar 

  2. Al-aghabary, K., Zhu, Z., Qinhua, S. 2004. Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J. Plant Nutr. 27:2101–2115.

    Article  CAS  Google Scholar 

  3. Almeselmani, M., Deshmukh, P.S., Sairam, R.K., Kushwaha, S.R., Singh, T.P. 2006. Protective role of antioxidant enzymes under high temperature stress. Plant Sci. 171:382–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Almeselmani, M., Deshmukh, P.S. 2012. Effect of high temperature stress on physiological and yield parameters of some wheat genotypes recommended for irrigated and rainfed condition. Jordan J. Agric. Sci. 8:66–77.

    Google Scholar 

  5. Anon, S., Fernandez, J.A., Franco, J.A., Torrecillas, A., Alarcón, J.J., Sánchez-Blanco, M.J. 2004. Effects of water stress and night temperature preconditioning on water relations and morphological and anatomical changes of Lotus creticusplants. Hort. Sci. 101:333–342.

    Article  Google Scholar 

  6. Badawi, M., Reddy, Y.V., Agharbaoui, Z., Tominaga, Y., Danyluk, J., Sarhan, F., Houde, M. 2007. Structure and functional analysis of wheat ICE (Inducer of CBF Expression) genes. Plant Cell Physiol. 48:1237–1249.

    Google Scholar 

  7. Barrs, H.D., Weatherley, P.E. 1962. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust. J. Biol. Sci. 15:413–428.

    Article  Google Scholar 

  8. Berry, J.A., Raison, J.K. 1981. Responses of macrophytes to temperature. In: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (eds), Encyclopedia of Plant Physiology, Physiological Plant Ecology, New Series, Vol 12A. Springer. New York, USA. pp. 277–338.

  9. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Ann. Biochem. 72:248–254.

    Article  CAS  Google Scholar 

  10. Chance, M., Maehly, A.C. 1955. Assay of catalases and peroxidases. Methods Enzymol. 2:764.

    Article  Google Scholar 

  11. Epstein, E. 1999. Silicon. Ann. Rev. Plant Physiol. 50:641–664.

    Article  CAS  Google Scholar 

  12. Giannopolitis, C.N., Ries, S.K. 1977. Superoxide dismutase I. Occurrence in higher plants. Plant Physiol. 59:309–314.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gong, H.J., Chen, K.M., Chen, G.C., Wang, S.M., Zhang, C.L. 2003. Effect of silicon on growth of wheat under drought. J. Plant Nutr. 26:1055–1063.

    Article  CAS  Google Scholar 

  14. Gong, H., Zhu, X., Chen, K., Wang, S., Zhang, C. 2005. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci. 169:313–321.

    Article  CAS  Google Scholar 

  15. Gong, H.J., Chen, K.M., Zhao, Z.G., Chen, G.C., Zhou, W.J. 2008. Effects of silicon on defense of wheat against oxidative stress under drought at different developmental stages. Biol. Plantarum 52:592–596.

    Article  CAS  Google Scholar 

  16. Guttieri, M.J., Stark, J.C., Obrien, K., Souza, E. 2001. Relative sensitivity of spring wheat grain yield and quality parameters to moisture deficit. Crop Sci. 41:327–335.

    Article  Google Scholar 

  17. Halliwell, B., Gutteridge, J.M.C. 1999. Free Radicals in Biology and Medicine. Clarendon Press, Oxford University Press. Oxford, New York.

    Google Scholar 

  18. Hattori, T., Inanaga, S., Araki, H., An, P., Morita, S., Luxova, M., Lux, A. 2005. Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol. Plant 123:459–466.

    Article  CAS  Google Scholar 

  19. Hong, S.S., Hong, T., Jiang, H., Xu, D.Q. 1999. Changes in the non-photochemical quenching of chlorophyll fluorescence during aging of wheat flag leaves. Photosynthetica 36:621–625.

    Article  Google Scholar 

  20. Hussain, M., Shabir, G., Farooq, M., Jabran, K., Farooq, S. 2012b. Developmental and phenological responses of wheat to sowing dates. Pak. J. Agri. Sci. 49:459–468.

    Google Scholar 

  21. Hussain, M., Farooq, M., Shabir, G., Khan, M.B., Zia, A.B., Lee, D.D. 2012a. Delaying planting decreases wheat productivity. Int. J. Agric. Biol. 14:533–539.

    Google Scholar 

  22. Iqbal, M., Khan, M.A., Anwar, M.Z. 2002. Zero-tillage technology and farm profits: a case study of wheat growers in the rice zone of Punjab. Pak. Dev. Rev. 41:665–682.

    Article  Google Scholar 

  23. Kochhar, S., Kochhar, V.K. 2005. Expression of antioxidant enzymes and heat shock protein in relations to combine stress of cadmium and heat in Vigna mungoseedlings. Plant Sci. 168:921–929.

    Article  CAS  Google Scholar 

  24. Khoshravesh, M., Sefidkouhi, G.M.A., Valipour, M. 2015. Estimation of reference evapotranspiration using multivariate fractional polynomial, Bayesian regression, and robust regression models in three arid environments. Appl. Water Sci. 5:122–132.

    Article  Google Scholar 

  25. Li, Q.F., Ma, C.C., Shang, Q.L. 2007. Effects of silicon on photosynthesis and antioxidative enzymes of maize under drought stress. Chinese J. Appl. Ecol. 18:531–536.

    CAS  Google Scholar 

  26. Liang, Y., Chen, Q., Zhang, W., Ding, R. 2003. Exogenous silicon increases antioxidant enzyme activity and reduces lipid peroxidation in root of salt-stressed barley (Hordeum vulgareL.). Plant Physiol. 160:1157–1167.

    Article  CAS  Google Scholar 

  27. Liang, Y., Zhang, W., Chen, Q., Liu, Y., Ding, R. 2006. Effect of exogenous silicon (Si) on H-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgareL.). Environ. Exp. Bot. 57:212–219.

    Article  CAS  Google Scholar 

  28. Liang, Y., Sun, W., Zhu, Y.G., Christie, P. 2007. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ. Pollut. 147:422–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liang, Y.C., Shen, Q.R., Shen, Z.C., Ma, T.S. 1996. Effects of silicon on salinity tolerance in barley cultivars. J. Plant Nutr. 19:173–183.

    Article  CAS  Google Scholar 

  30. Liang, Y.C. 1998. Effects of Si on leaf ultrastructure, chlorophyll content and photosynthetic activity in barley under salt stress. Pedosphere 34:289–296.

    Google Scholar 

  31. Liang, Y.C., Zhu, J., Li, Z.J. 2008. Role of silicon in enhancing resistance to freezing stress in two contrasting winter wheat cultivars. Environ. Exp. Bot. 64:286–294.

    Article  CAS  Google Scholar 

  32. Liu, X., Huang, B. 2000. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci. 40:503–509.

    Article  CAS  Google Scholar 

  33. Ma, J.F., Yamaji, N. 2006. Silicon uptake and accumulation in higher plants. Trends Plant Sci. 11:392–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mazorra, L.M., Nunez, E., Echerarria, M., Coll, F., Sánchez-Blanco, M.J. 2002. Influence of brassinosteriods and antioxidant enzymes activity in tomato under different temperatures. Plant Biol. 45:593–596.

    Article  CAS  Google Scholar 

  35. Mittler, R., Vanderauwera, S., Gollery, M., Van Breusegem, F. 2004. Reactive oxygen gene network of plants. Trends Plant Sci. 9:490–498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Moussa, H.R. 2006. Influence of exogenous application of silicon on physiological response of salt-stressed maize (Zea maysL.). Int. J. Agric. Biol. 2:293–297.

    Google Scholar 

  37. Panchuk, Volkov, R.A., Schoffl, F., 2002. Heat stress and heat shock transcript factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol. 129:838–853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pell, E.J., Dann, M.S. 1991. Multiple stress and plant senescence. In: Mooney, H.A., Winner W.E., Pell, E.J. (eds), Integrated Response of Plants to Stress. Academic Press. San Diego, CA, USA. pp. 189–204.

    Google Scholar 

  39. Pourreza, J., Soltani, A., Naderi, A., Aynehband, A. 2009. Modelling leaf production and senescence in wheat. American-Eurasian J. Agric. Environ. Sci. 6:498–507.

    Google Scholar 

  40. Qian, Q.Q., Zai, W.S., Zhu, Z.J., Yu, J.Q. 2006. Effects of exogenous silicon on active oxygen scavenging systems in chloroplasts of cucumber (Cucumis sativusL.) seedlings under salt stress. J. Plant Physiol. Mol. Biol. 32:107–112.

    CAS  Google Scholar 

  41. Rahman, M.A., Chikushi, J., Yoshida, S., Yahata, H., Yasunsga, B. 2005. Effect of high air temperature on grain growth and yields of wheat genotypes differing in heat tolerance. J. Agric. Meteorol. 60:605–608.

    Article  CAS  Google Scholar 

  42. Ristic, Z., Bukovnik, U., Momcilovic, Fu, I.J., Prasad, P.V. 2008. Heat-induced accumulation of chloroplast protein synthesis elongation factor, EF-Tu, in winter wheat. J. Plant Physiol. 165:192–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Romero-Aranda, M.R., Jurado, O., Cuartero, J. 2006. Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J. Plant Physiol. 163:847–855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sairam, R.K., Tyagi, A. 2004. Physiology and molecular biology of salinity stress tolerance in plants. Curr. Sci. 86:407–421.

    CAS  Google Scholar 

  45. Simoes-Araujo, J.L., Rumjanek, N.G., Margis-Pinheiro, M. 2003. Small heat shock proteins genes are differentially expressed in distinct varieties of common bean. Braz. J. Plant Physiol. 15:33–41.

    Article  CAS  Google Scholar 

  46. Steel, R.G.D., Torrie, J.H., Dickey, D.A. 1997. Principles and Procedures of Statistics: A Biometric Approach, 3rd Ed. McGraw Hill Book Co. Inc. New York. USA.

    Google Scholar 

  47. Takahashi, C.Y., Nakaseko, K. 1992. Varietals differences in yield response to delayed sowing of spring wheat in Hokkaido. Japanese J. Crop Sci. 61:22–27.

    Article  Google Scholar 

  48. Tsukaguchi, T., Kawamitsu, Y., Takeda, H., Suzuki, K., Egawa, Y. 2003. Water status of flower buds and leaves as affected by high temperature in heat tolerant and heat-sensitive cultivars of snap bean (Phaseolus vulgarisL.). Plant Prod. Sci. 6:24–27.

    Article  Google Scholar 

  49. Vacca, R.A., De, Pinto, M.C., Valenti, D., Passarella, S., Marra, E., De Gara, L. 2004. Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco Bright-Yellow 2 cells. Plant Physiol. 134:1100–1112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Valentinuz, O.R., Tollenaar, M. 2004. Vertical profile of leaf senescence during the grain-filling period in older and new maize hybrids. Crop Sci. 44:827–834.

    Article  Google Scholar 

  51. Valipour, M., Eslamian, S. 2014. Analysis of potential evapotranspiration using 11 modified temperaturebased models. Int. J. Hydro. Sci. Technol. 4:192–207.

    Article  Google Scholar 

  52. Valipour, M. 2014. Analysis of potential evapotranspiration using limited weather data. Appl. Water Sci. 4:113–120.

    Google Scholar 

  53. Valipour, M. 2015a. Calibration of mass transfer-based models to predict reference crop evapotranspiration. Appl. Water Sci. 5:239–248.

    Article  CAS  Google Scholar 

  54. Valipour, M. 2015b. Temperature analysis of reference evapotranspiration models. Meteorol. Appl. 22:385–394.

    Article  Google Scholar 

  55. Wahid, A., Close, T.J. 2007. Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol. Plant 51:104–109.

    Article  CAS  Google Scholar 

  56. Wardlaw, I.F., Blumenthal, C., Larroque, O., Wrigley, C.W. 2002. Contrasting effects of chronic heat stress and heat shock on kernel weight and flour quality in wheat. Funct. Plant Biol. 29:25–34.

    Article  Google Scholar 

  57. Wong, Y.C., Heits, A., Ville, J.D. 1972. Foliar symptoms of silicon deficiency in the sugarcane plant. Proc. Cong. Int. Soc. Sugarcane Technol. 14:766–776.

    Google Scholar 

  58. Xie, X.J., Shen, S.H.H., Li, Y.X., Zhao, X.Y., Li, B.B., Xu, D.F. 2011. Effect of photosynthetic characteristic and dry matter accumulation of rice under high temperature at heading stage. Afr. J. Agric. Res. 6:1931–1940.

    Google Scholar 

  59. Xu, S., Li, J., Zhang, X., Wei, H., Cui, L. 2006. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultra-structure of chloroplasts in two cool-season turfgrass species under heat stress. Environ. Exp. Bot. 56:274–285.

    Article  CAS  Google Scholar 

  60. Zekri, M. 1991. Effects of NaCl on growth and physiology of sour orange and Cleopatra mandarin seedlings. Sci. Hortic. 47:305–315.

    Article  CAS  Google Scholar 

  61. Zhu, Z., Wei, G., Lia, J., Qiana, Q., Yu, J. 2004. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativusL.). Plant Sci. 167:527–533.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to A. Sattar or M. Hussain.

Additional information

Communicated by A. Goyal and A. Pécsváradi

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sattar, A., Cheema, M.A., Abbas, T. et al. Physiological Response of Late Sown Wheat to Exogenous Application of Silicon. CEREAL RESEARCH COMMUNICATIONS 45, 202–213 (2017). https://doi.org/10.1556/0806.45.2017.005

Download citation

Keywords

  • silicon
  • high temperature
  • antioxidants
  • water relations
  • late sown wheat