Phenotypic Analysis, Correlation Studies and Linkage Mapping of QTL for Traits Promoting Cultivation under Dry Direct Seeded Aerobic Conditions for the Development of Water-efficient High Yielding Rice Lines

Abstract

Aerobic adaptation could be an important modification in the traditional rice to cope up with the increasing water scarcity problem. Identification of stable QTL for traits promoting adaptation to aerobic conditions can facilitate the development of water-efficient aerobic rice varieties with better yields. Filial and backcross populations derived from the crosses between high-yielding low-land (HKR47) and aerobic (MAS26) indica rice varieties, were evaluated for various physio-morphological traits including root traits (in case of net house evaluation). Under aerobic field conditions, grain yield per plant showed significant positive correlation with plant height, effective number of tillers/plant and panicle length in all the populations. Grain yield per plant also showed positive correlation with root length in both filial populations and with fresh and dry root weight in F2 population. Two parental rice varieties displayed polymorphism at 125 of the 803 SSR loci, which were used to map the QTL associated with traits promoting aerobic adaptation. A total of 14 QTL were detected, 10 of them were identified on chromosome 8. Study led to the identification of a number of promising plants with higher grain yield, better root length/biomass under managed aerobic conditions and possessing most of the identified QTL.

References

  1. Amudha, K., Thiyagarajan, K., Robin, S., Prince, S.J.K., Poornima, R., Suji, K.K. 2009. Heterosis under aerobic condition in rice. Electron. J. Plant Breed. 1:769–775.

    Google Scholar 

  2. Belder, O., Bouman, B.A.M., Spiertz, J.H.J., Peng, S., Castaneda, A.R., Visperas, R.M. 2005. Crop performance, nitrogen and water use in flooded and aerobic rice. Plant Soil 273:167–182.

    CAS  Article  Google Scholar 

  3. Bernier, J., Kumar, A., Venuprasad, R., Spaner, D., Verulkar, S., Mandal, N.P., Sinha, P.K., Peeraju, P., Dongre, P.R., Mahto, R.N., Atlin, G. 2008. Characterization of the effect of a QTL for drought resistance in rice, qtl12.1, over a range of environments in the Philippines and eastern India. Euphytica 166:207–217.

    Article  Google Scholar 

  4. Brondani, C., Rangel, P.H.N., Brondani, R.P.V., Ferreira, M.E. 2002. QTL Mapping and introgression of yield-related traits from Oryza glumaepatula to cultivated rice (Oryza sativa) using microsatellite markers. Theor. Appl. Genet. 104:1192–1203.

    CAS  Article  Google Scholar 

  5. Clark, L.J., Aphale, S.L., Barraclough, P.B. 2000. Screening the ability of rice roots to overcome the mechanical impedance of wax layers: Importance of test conditions and measurement criteria. Plant Soil 219:187–196.

    CAS  Article  Google Scholar 

  6. Courtois, B., Shen, L., Petalcorin, W., Carandang, S., Mauleon, R., Li, Z. 2003. Locating QTLs controlling constitutive root traits in the rice population IAC 165 × Co39. Euphytica 134:335–345.

    CAS  Article  Google Scholar 

  7. FAO 2013. Statistics. https://doi.org/faostat3.fao.org/browse/Q/QC/E.

  8. Fisher, R.A., Yates, F. 1963. Statistical tables for biological, agricultural and medicinal research, 6th edn. Oliver and Boyd. Edinburgh, UK. 63. p.

    Google Scholar 

  9. Gandhi, V.R., Rudresh, N.S., Shivamurthy, M., Hittalmini, S. 2011. Performance and adoption of new aerobic rice variety MAS 946-1 (Sharada) in southern Karnataka. Karnataka J. Agric. Sci. 25:5–8.

    Google Scholar 

  10. Girish, T.N., Gireesha, T.M., Vaishali, M.G., Hanamareddy, B.G., Hittalmani, S. 2006. Response of a new IR50/ Moroberekan recombinant inbred population of rice (Oryza sativa L.) from an indica × japonica cross for growth and yield traits under aerobic conditions. Euphytica 152:149–161.

    Article  Google Scholar 

  11. Hanamaratti, N.G. 2007. Identification of QTL for physiological and productivity traits under drought stress and stability analysis in upland rice (Oryza sativa L.). Dissertation for Ph.D. University of Agricultural Sciences. Dharwad, Karnataka, India.

  12. Ingram, K.T., Bueno, F.D., Namuco, O.S., Yabao, E.B., Beyrouty, C.A. 1994. Rice root traits for drought resistance and their genetic variation. In Kirk, G.J.D. (ed.), Rice Roots: Nutrient and Water Use. IRRI. Manila, Philippines. pp. 67–77.

    Google Scholar 

  13. IRGSP 2005. The map-based sequence of the rice genome. Nature 436:793–800.

    Article  Google Scholar 

  14. James Martin, G., Padmanathan, P. K., Subramanian, E. 2007. Identification on suitable rice variety adaptability to aerobic irrigation. J. Agric. Biol. Sci. 2:2.

    Google Scholar 

  15. Kamoshita, A., Wade, L.J., Ali, M.L., Pathan, M.S., Zhang, J., Sarkarung, S., Nguyen, H.T. 2002. Mapping QTLs for root morphology of a rice population adapted to rainfed lowland conditions. Theor. Appl. Genet. 104:880–893.

    CAS  Article  Google Scholar 

  16. Kanbar, A., Toorchi, M., Shashidhar, H. E. 2009. Relationship between root and yield morphological characters in rainfed low land rice (Oryza sativa L.). Cereal Res. Commun. 37:261–268.

    Article  Google Scholar 

  17. Kharb, A., Sandhu, N., Jain, S., Jain, R.K. 2015. Linkage mapping of quantitative trait loci for traits promoting aerobic adaptation on chromosome 8 in indica rice (Oryza sativa L.). Rice Genomics Genet. 6:1–5.

    Google Scholar 

  18. Li, Z.C., Mu, P., Li, C.P., Zhang, H.L., Li, Z.K., Gao, Y.M., Wang, X.Q. 2005. QTL mapping of root traits in a doubled haploid population from a cross between upland and low-land japonica rice in three environments. Theor. Appl. Genet. 110:1244–1252.

    CAS  Article  Google Scholar 

  19. Manickavelu, A., Nadarajan, N., Ganesh, S.K., Gnanamalar, R.P., Chandra, S., Babu, R. 2006. Drought tolerance in rice: morphological and molecular genetic consideration. Plant Growth Regul. 50:121–138.

    CAS  Article  Google Scholar 

  20. Nagaraju, C., Sekhar, M.R., Reddy, K.H., Sudhakar, P. 2013. Correlation between traits and path analysis coefficient for grain yield and other components in rice (Oryza sativa L.) genotypes. Int. J. Appl. Biol. Pharm. 4:137–142.

    Google Scholar 

  21. Parthasarathi, T., Vanitha, K., Lakshamanakumar, P., Kalaiyarasi, D. 2012. Aerobic rice-mitigating water stress for the future climate change. Intl. J. Agron. Plant Prod. 3:241–254.

    Google Scholar 

  22. Qu, Y., Mu, P., Zhang, H., Chen, C.Y., Gao, Y., Tian, Y., Wen, F., Li, Z. 2008. Mapping QTLs of root morphological traits at different growth stages in rice. Genetica 133:187–200.

    Article  Google Scholar 

  23. Ramekar, R.V., Sa, K.J., Woo, S.Y., Lee, J.K. 2015. Non-parental banding patterns in recombinant inbred line population of maize with SSR markers. Genet. Mol. Res. 14:8420–8430.

    CAS  Article  Google Scholar 

  24. Rohlf, F.J. 1993. NTSYS-PC: Numerical taxonomy and multivariate analysis system. Version 1.8. Exeter Software. New York, USA.

    Google Scholar 

  25. Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A., Allard, R.W. 1984. Ribosomal spacer length polymorphism in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc. Natl Acad. Sci. USA 81:8014–8019.

    CAS  Article  Google Scholar 

  26. Sandhu, N., Jain, S., Kumar, A., Mehla, B.S., Jain, R. 2013. Genetic variation, linkage mapping of QTL and correlation studies for yield, root, and agronomic traits for aerobic adaptation. BMC Genet. 14:104–119.

    Article  Google Scholar 

  27. Sandhu, N., Torres, R.N., Cruz, M.T.S., Maturan, P.C., Jain, R., Kumar, A., Henry, A. 2014. Traits and QTLs for development of dry direct-seeded rainfed rice varieties. J. Exp. Bot. 66:225–244.

    Article  Google Scholar 

  28. Shen, L., Courtois, B., Mcnally, K.L., Robin, S., Li, Z. 2001. Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection. Theor. Appl. Genet. 103:75–83.

    CAS  Article  Google Scholar 

  29. Tuong, T.P., Bouman, B.A.M., Mortimer, M. 2005. More rice, less water-integrated approaches for increasing water productivity in irrigated rice-based systems in Asia. Plant Prod. Sci. 8:231–241.

    Article  Google Scholar 

  30. Venuprasad, R., Bool, M.E., Dalid, C.O., Bernier, J., Kumar, A., Atlin, G.N. 2009. Genetic loci responding to two cycles of divergent selection for grain yield under drought stress in a rice breeding population. Euphytica 167:261–269.

    CAS  Article  Google Scholar 

  31. Venuprasad, R., Shashidhar, H.E., Hittalmani, S., Hemamalini, G.S. 2002. Tagging quantitative trait loci associated with grain yield and root morphological traits in rice (Oryza sativa L.) under contrasting moisture regimes. Euphytica 128:293–300.

    CAS  Article  Google Scholar 

  32. Vikram, P., Mallikarjuna Swami, B.P., Dixit, S., Helaluddin, A., Sta Cruz, M.T., Singh, A.K., Guoyou, Y., Kumar, A. 2012. Bulk segregant analysis: an effective approach for mapping consistent-effect drought grain yield QTL in rice. Field Crop Res. 134:185–192.

    Article  Google Scholar 

  33. Wang, S., Basten, C.J., Zeng, Z.B. 2012. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University. Raleigh, NC, USA (https://doi.org/statgen.ncsu.edu/qtlcart/WQTLCart.htm).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Kharb.

Additional information

Communicated by A. Aniol

Electronic supplementary material

42976_2016_4404658_MOESM1_ESM.pdf

Phenotypic Analysis, Correlation Studies and Linkage Mapping of QTL for Traits Promoting Cultivation under Dry Direct Seeded Aerobic Conditions for the Development of Water-efficient High Yielding Rice Lines

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kharb, A., Jain, S. & Jain, R.K. Phenotypic Analysis, Correlation Studies and Linkage Mapping of QTL for Traits Promoting Cultivation under Dry Direct Seeded Aerobic Conditions for the Development of Water-efficient High Yielding Rice Lines. CEREAL RESEARCH COMMUNICATIONS 44, 658–668 (2016). https://doi.org/10.1556/0806.44.2016.037

Download citation

Keywords

  • rice
  • aerobic
  • molecular markers
  • root traits
  • QTL